Время отключения автоматического выключателя ПУЭ

Содержание

Категории автоматических выключателей: A, B, C и D

Время отключения автоматического выключателя ПУЭ

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции.

Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя.

В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления.

Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек.

Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

Читайте также  Класс срабатывания автоматических выключателей

Источник: https://YaElectrik.ru/jelektroshhitok/kategorii-avtomaticheskih-vyklyuchatelej-a-b-c-i-d

Прогрузка автоматических выключателей

Автоматические выключатели (автоматы) — это электрические аппараты, которые предназначены для нечастых оперативных включений и отключений электрических цепей и защиты электрических установок при перегрузках, коротких замыканиях, а также при недопустимых снижениях напряжения.

По роду тока они классифицируются на автоматы постоянного тока, переменного тока, постоянного и переменного токов. Бывают токоограничивающие и нетокоограничивающие. Токоограничивающие автоматические выключатели отключают ток короткого замыкания, который еще не успел достигнуть установившегося значения.

Автоматы состоят из следующих основных элементов: главной контактной системы, дугогасительной системы, привода, расцепляющего устройства, расцепителей и вспомогательных контактов.

Автоматические выключатели характеризуются:

  • номинальным напряжением — максимальным напряжением сети, при котором допускается применять выключатель;
  • номинальным током — максимальным током, который выдерживает выключатель длительное время;
  • собственным временем срабатывания — временем от момента, когда контролируемый параметр превзошел установленное для него значение до момента начала расхождения контактов. Это время зависит от способа расцепления и конструкции расцепляющего устройства выключателя, от силы отключающих пружин, массы подвижной системы и пути этой массы до момента размыкания контактов;
  • полным временем срабатывания — собственным временем отключения плюс время гашения дуги, зависящее главным образом от эффективности дугогасительного устройства.

Как видим, автоматический выключатель является сложным электрическим аппаратом, который состоит из множества элементов, взаимодействующих друг с другом. Основным элементом любого автомата является расцепитель, который контролирует заданный параметр защищаемой цепи и воздействует на механизм расцепления.

Неисправность или неправильная работа расцепителя может привести к тяжелым последствиям. Для того, чтобы этого не произошло при вводе электроустановки в эксплуатацию, а также в ходе эксплуатации производят прогрузку автоматических выключателей.

При этом полученные результаты сравниваются с ГОСТ и данными завода изготовителя.

Использование неисправного автомата может привести к тяжелым последствиям. Например, к поражению электрическим током или пожару!

Каким прибором производится проверка автоматических выключателей?

Существует много различных приборов, предназначенных для проверки характеристик расцепителей автоматов. Принципы работы у них схожие. Состоят они как правило из нескольких блоков — нагрузочный, регулировочный и измерительный. Нагрузочный блок формирует испытательный ток, силу которого можно изменять при помощи регулировочного блока. Соответственно, измерительный блок производит измерения параметров работы расцепителей.

Измерительный и регулировочный блок, как правило, выполнены в общем корпусе. Наиболее распространены следующие устройства для проверки автоматов: «Сатурн», «УПТР», «Ретом», «УПА», «РТ», «АП», «Синус». Все приборы представленных выше марок выпускаются в различных модификациях. Модификации отличаются друг от друга величиной испытательного тока и наличием дополнительных функций. Инженеры нашей компании используют приборы «УПТР-1МЦ» и «УПТР-2МЦ».

Первый используется для проверки характеристик с номинальным током до 350 ампер, второй — до 800 ампер.

Кто может производить работы по испытанию автоматов?

Работы по проверке расцепителей автоматических выключателей должны производиться сотрудниками специализированных организаций. Данные организации должны иметь свидетельство о регистрации электроизмерительной лаборатории с разрешением на проверку действия расцепителей автоматических выключателей.

Сотрудники электролаборатории, непосредственно производящие испытание должны обладать соответствующими характеру работы знаниями и квалификацией, иметь удостоверение по электробезопасности с группой не ниже III в котором стоит отметка о том, что они имеют право производить испытание оборудования.

Периодичность проверки автоматических выключателей

Периодичность прогрузки автоматов указана в ПТЭЭП приложение 3. Согласно пункту 28.6 проверка расцепителей автоматических выключателей следует производить при приемо-сдаточных испытаниях, а также после капитального ремонта электроустановки.

Однако эта периодичность носит рекомендательный характер, следовательно технический руководитель или ответственный за электрохозяйство может сократить сроки проведения данного вида испытаний. Он может установить сроки планово-предупредительного ремонта (ППР), в которых указать меньшую периодичность.

При этом следует учесть, что данный вид испытания подвергает автомат излишней нагрузке, что явно не способствует продлению его срока службы.

В соответствии с требованиями ПУЭ (7-е издание) в электроустановках, выполненных по требованиям раздела 6, глав 7.1 и 7.2, проверяются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей. При обнаружении неисправного автоматического выключателя дополнительно проверяется удвоенное количество автоматов

Методика проверки расцепителей автоматических выключателей

Согласно ГОСТ Р 50345-2010 существует около 14 типовых испытаний для автоматических выключателей. Нас будет интересовать испытание характеристик расцепления. Характеристика теплового расцепителя (с обратно зависимой время-токовой характеристикой) должна соответствовать пункту 8.6.1 и таблице 7 данного норматива.

Как видно из таблицы, некоторые этапы испытания расцепителя с обратно-зависимой характеристикой занимают очень много времени. Если к нему прибавить время, которое уходит на то, чтобы проверяемые элементы остыли, то можно представить сколько часов, а то и дней может уйти на испытание автоматов в одной небольшой электроустановке.

Поэтому, прогрузку автоматических выключателей, как правило, сразу начинают с испытания «с». Поясним как это происходит. На все полюса подается испытательный ток, равный 2,55 Iном. При этом расцепитель должен сработать за время, равное не более 60 секунд для автоматов с Iном до 32А включительно и за время не более 120 секунд для автоматов с Iном более 32А.

Далее производят проверку расцепителя мгновенного действия. Для этого через все полюса автоматического выключателя пропускают ток равный 3Iном/5Iном/10Iном соответственно для автоматов категории B/С/D. При этом, расцепитель не должен сработать за время, равное не более 0,2 секунды. Следующим этапом пропускают ток, равный 5Iном/10Iном/20Iном.

Расцепитель должен сработать за время менее чем за 0,1 секунду.

Примечание. При проверке время-токовых характеристик расцепителя с обратно-зависимой от тока характеристикой, должны учитываться рекомендации завода изготовителя!

скачать протокол проверки автоматических выключателей

Источник: http://www.olimp02.ru/elektroizmeritelnaya-laboratoriya/ispytanie-avtomaticheskikh-vyklyuchatelej/

Проверка автоматических выключателей. Прогрузка и испытание автоматов

Заказать услугу или задать вопрос /Электролаборатория/Проверка выключателей

Электротехническая лаборатория ГК Эколайф оказывает услугу Проверка автоматических выключателей. Прогрузка и испытание автоматов. По результатам испытания составляется протокол в технический отчет ЭТЛ.

1. Проверка работы расцепителей автоматических выключателей2. Как проверяется срабатывание автоматических выключателей?3. Сколько автоматических выключателей требуется проверить?4. Необходимость эксплуатационной проверки и прогрузки автоматов

5. Результаты проверки автоматических выключателей

Для подтверждения безопасности электрооборудования его требуется проверять на исправность и соответствие установленным требованиям. Ситуации, в которых требуется проверка автоматических выключателей:

  • прием в эксплуатацию после установки электроустановки;
  • спустя установленный системой ППР срок эксплуатации;
  • после проведения капитального ремонта электрических устройств;
  • после текущего ремонта;
  • в профилактических целях в межремонтный период.

В ходе испытаний проводится проверка соответствия характеристикам, которые задаются оборудованию производителем. Цель проверки — установить, обеспечивает ли оборудование такие параметры:

  • предотвращение поражения электрическим током при коротком замыкании (это условие обязательно в том случае, если других защитных мер для полной безопасности недостаточно);
  • защиту электросети от возгораний и перегрузок при технологических неисправностях или повреждении изоляции.

Чтобы автоматический выключатель защищал от поражения электрическим током, он должен обеспечивать отключение от питания участка электрической цепи, который зависит от тока одофазного замыкания.

Перед проверкой автоматических выключателей часто задаются следующие вопросы:

  1. Сколько автоматических выключателей необходимо испытывать?
  2. Требуется ли проведение проверки в ходе эксплуатационных испытаний?
  3. Требуется ли периодически повторное проведение проверок?
  4. Испытания проводятся в лаборатории или у заказчика?
  5. Что делать, если оборудование проверку не прошло?
  6. Требуются ли резервные автоматические выключатели?

Проверка работы расцепителей автоматических выключателей

Основная часть испытаний автоматов — это проверка исправной работы их расцепителей. Дополнительно проверяется качество монтажа выключателей, затяжка контактов, соответствие защитного оборудования проектной документации, но эти параметры уже второстепенны.

Существует большое количество модификаций автоматических выключателей: воздушные, модульные, предназначенные для защиты двигателей, в литом корпусе. Самыми распространенными являются модульные автоматические выключатели, устанавливаемые на DIN-рейку, поэтому целесообразно будет рассмотреть ход проверки на их примере.

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В свою очередь электромагнитные расцепители подразделяются на типы в зависимости от временных и токовых характеристик, то есть от того, за какое время и токи какой силы приводят выключатель в действие. Обозначаются типы электромагнитных расцепителей заглавными латинскими буквами. К наиболее распространенным относятся типы, соответствующие буквам B, C, D.

Читайте также  Автоматическое включение света в туалете

В этих элементах мгновенное расцепление происходит при таких стандартных диапазонах:

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 «Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения» регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7 Время-токовые рабочие характеристики

Испытание Тип расцепителя Испытательный ток Начальное состояние Время расцепления или нерасцепления Требуемый результат Примечание
a B, C, D 1,13 In Холодное t < 1 ч (при In < 63 А) t < 2 ч (при In> 63 А) Без расцепления
b B, C, D 1,45 In  Сразу же после испытания t < 1 ч (при In < 63 А) t < 2 ч (при In> 63 А) Расцепление Непрерывное нарастание тока в течение 5 с
c B, C, D 2,55 In  Холодное 1 с < t < 60 с (при In < 32 А)1 c < t < 120 c (при In > 32 A) Расцепление
d B 3 In Холодное t< 0,1 с Без расцепления Ток создается замыканием вспомогательного выключателя
C 5 In
D 10 In
e B 5 In Холодное t< 0,1 с Расцепление Ток создается замыканием вспомогательного выключателя
C 10 In
D 20 In (в особых случаях 50 In)

Термин «холодное состояние» означает, что при контрольной температуре калибровки ток предварительно не пропускают. Примечание — Для выключателей типа D рассматривается возможность дополнительного испытания для промежуточного значения между c и d.

a, b и c — это испытания тепловой защиты, а d и e — соответственно, защиты от короткого замыкания (КЗ).

Как проверяется срабатывание автоматических выключателей?

Порядок проведения проверок утвержден в нормативной документации. Так, срабатывание электромагнитных расцепителей проверяется согласно ПУЭ 1.8.37 путем проведения испытаний, которые рекомендует завод производитель.

Специалисты нашей лаборатории для выполнения испытаний используют специальное оборудование: аппарат «Синус-3600». Этот прибор весит 22 кг и внешне напоминает системный блок ПК. Аппарат позволяет успешно провести испытания расцепителей электромагнитного типа, полупроводниковых и тепловых при условии, что In попадает в диапазон от 16 до 320 А.

Для проведения испытаний выводы аппарата подключают к вводам автоматического выключателя. После этого подается ток и засекается, какое время пройдет до срабатывания механизма расцепления. При этом испытание проводится поэтапно:

  1. Сначала на неразогретый прибор подается ток, который превышает номинальный в 1,13 раз. Расцепитель теплового типа не должен срабатывать на протяжении 1 часа номинальный ток меньше 63 А, и минимум в течение 2 часов при значении номинального тока выше 63 А.
  2. Сразу посл завершения первого этапа на оборудование подают ток, который превышает номинальное значение в 1,45 раза. Расцепитель должен сработать в течение часа при In63 А.
  3. После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In32 А расцепление должно произойти за 2 минуты.

Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

Подобным же образом проводится и испытание автоматических выключателей с электромагнитными расцепителями:

  1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
  2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

Сколько автоматических выключателей требуется проверить?

Даже на среднем объекте автоматических выключателей может быть сотни, поэтому проверить все может быть достаточно проблематично. К тому же это вызовет дополнительные траты.

Согласно ПУЭ (ПУЭ, п. 1.8.37, пп. 3) проверять необходимо определенную часть от всех выключателей.

В жилых, административных, общественных, бытовых зданиях, спортивных сооружениях, клубных учреждениях, на зрелищных мероприятий проверять должно не менее 2% автоматических выключателей распределительного типа и групповых сетей, а также вводные, пожарной сигнализации, автоматического пожаротушения, цепи аварийного освещения, секционные выключатели. В прочих электрических установках возможно снижение количества проверяемых автоматов распределительного типа и групповых сетей до 1%. В остальном — правила те же.

Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети.

Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Необходимость эксплуатационной проверки и прогрузки автоматов

Требуется ли проведение проверку автоматических выключателей в ходе эксплуатационных испытаний, может решать технический руководитель объекта. В нормативной документации не указано точно, с какой периодичность должны проводиться проверки, поэтому их частота полностью в компетенции лица, ответственного за техническую безопасность объекта.

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Результаты проверки автоматических выключателей

Результаты проведения испытательных работ заносятся в специальный протокол. В документе фиксируется срабатывание или несрабатывание автомата, время срабатывания и ток в момент срабатывания.

Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже.

Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его.

И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

К НАЧАЛУ СТРАНИЦЫ

Источник: https://vnt24.ru/proverka-vyklyuchatelej

Как проверить работоспособность автоматического выключателя?

После замены или вновь проложенной электропроводки необходимо установить приборы учета и все автоматы для нормальной работы бытовой техники и обеспечения бесперебойной работы всех типов подключенного оборудования. Установленное оборудование нужно проверить на срабатывание или как это еще принято называть — прогрузить. В этой статье мы подробно рассмотрим, как делается проверка автоматических выключателей напряжением до 1000 В.

Кратко об автоматах защиты

Автоматические выключатели предназначены выполнять роль коммутационных аппаратов, необходимых для проведения нагрузочного тока в режиме нормальной работы оборудования и размыкания электрической цепи в аварийном режиме при повышенном или пониженном напряжении.

Широкое применение АВ получили благодаря простоте установки, надежности в эксплуатации, безопасности при замене и обслуживании, быстроте срабатывания при токах короткого замыкания или ненормальных режимах. Такие автоматы устанавливают в электроустановках как с малой, так и с большой мощностью.

Читайте также  Расчет петли фаза нуль и выбор автомата

Существуют устройства с ручным и дистанционным управлением. При ненормальных режимах выключатель срабатывает автоматически. Все аппараты снабжены расцепителем максимального тока. Некоторые модели оснащены, кроме максимального и расцепителем по минимальному току. Такие автоматы предназначены заменять рубильники или плавкие вставки в пробочных предохранителях, что обеспечивает более надежную защиту бытовых приборов и подключенного оборудования.

АВ выпускаются в основном на ампераж от 6,3А до 6300А для установок переменного тока до 1 кВ, с разным числом полюсов. Это могут быть одно-, двух-, трех- и четырехполюсные автоматические выключатели.

Подробнее об устройстве автоматического выключателя вы можете узнать в нашей соответствующей статье. Сейчас бы хотелось дополнительно рассказать лишь о том, что защиту от ненормальных режимов осуществляет электромагнитный расцепитель, благодаря которому происходит отключение аппарата.

Существует два вида расцепителей:

  • электромагнитный или максимальный расцепитель от токов КЗ и перегрузки (без выдержки времени);
  • тепловой (электронный), срабатывающий при токах значительно превышающих номинальные значения нагрузочные токи (с выдержкой времени).

Оба вида защиты должны соответствовать нормативным документам завода-изготовителя (ПТЭЭП в Приложении 3). Для того чтобы устройство работало нормально перед установкой автоматического выключателя его необходимо проверить. Эта операция называется прогрузкой автомата, на чем мы сейчас и остановимся более подробно.

Методика прогрузки

При прогрузке измеряются основные характеристики автоматов (номинальный ток, ток срабатывания защиты, время срабатывания защиты при ненормальных режимах) на специальной установке. Все работы по проверке работоспособности проводит специальный персонал, имеющий допуск к таким испытаниям, с удостоверением с отметкой о допуске к специальным работам по испытаниям электрооборудования.

В удостоверении должна быть указана группа по Технике Безопасности, и напряжение, при котором работник может проводить проверки (до или выше 1000в). Удостоверение должно быть подписано главным энергетиком предприятия, которое проводит проверочные работы. Методика прогрузки АВ в заводских условиях должна соответствовать ГОСТу по низковольтной аппаратуре управления и распределения.

Оборудование

Для того чтобы проверить (прогрузить) автоматический выключатель нужно собрать довольно простую схему в которую входит необходимое для испытания оборудование:

  • соединительные провода;
  • КУ — ключ управления;
  • ЛАТР — лабораторный автотрансформатор, для изменения нагрузки;трансформатор нагрузки или нагрузочный трансформатор (НТ);
  • амперметр в качестве шунта;
  • ТТ — трансформатор тока.

Схема устройства для проверки АВ:

Методика прогрузки требует частичного демонтажа аппарата, после проверки исправности — обратного монтажа. Устройство для проведения испытания может быть другого типа, главное чтобы на АВ подавался ток искусственного короткого замыкания с измерением его значения, и учетом времени срабатывания защиты автомата в электрической сети.

Существуют даже специальные комплекты для проверки АВ, например СИНУС-1600, показанный на фото:

Сам процесс

Прогрузка автоматического выключателя с электромагнитным расцепителем осуществляется для определения времени срабатывания автомата в пределах защищаемой зоны по заводским характеристикам. Для этого на устройстве для испытания выставляется ток нагрузки, который равняется максимальному амперажу для данного типа АВ и время, согласно заводским характеристикам.

Для проведения проверки теплового расцепителя на испытательной установке выставляется трехкратный ток нагрузки и максимальное время срабатывания на отключение, согласное заводским характеристикам. Обычно это время от 5 сек. до 0,5мин.

Подробно все действия по проверке автомата рассмотрены на видео:

Как прогрузить АВ первичным токомИспытания в домашних условиях

Все результаты проводимых работ заносятся в протокол. В документе отражается величина наводимого ампеража и время срабатывания автомата. Протокол прогрузки подписывается лицом, проводящим испытания. Образец заполнения протокола проверки предоставлен ниже:

Сроки испытаний

Периодичность испытаний должна быть оговорена в сопроводительных нормативных документах завода-изготовителя, но рекомендуемая проверка — раз в три года при нормальной эксплуатации автоматического выключателя при номинальном токе нагрузки. При аварийных срабатываниях или ненормальной работе АВ периодичность может быть изменена, и должна быть проведена внеплановая проверка. Все рекомендации относятся к бытовым автоматам и выключателям, установленным в производственных помещениях.

Согласно ПУЭ гл.3.2, пункт 1.8.37 прогрузка автоматических выключателей на вводных и секционных аппаратах защиты, сетях аварийного освещения, пожарной сигнализации — 2% АВ групповых сетей. Требования ПУЭ для других электроустановок 1% всех устанавливаемых автоматов.

В случае обнаружения автоматических выключателей, не соответствующих заводским характеристикам, проводится методика проверки всей партии. После проведения прогрузки на каждый аппарат должен быть поставлен штамп с логотипом лаборатории, проводящей испытание, датой проведения и словом «Испытано» или «Годен до … (дата)». Это свидетельствует о том, что автомат прошел проверку и годен к эксплуатации.

Вот по такой методике выполняется проверка автоматических выключателей напряжением до 1000 В. Как вы видите, прогрузить автомат можно даже прибором, собранным в домашних условиях, главное — знать технику безопасности и технологию испытаний. Надеемся, теперь вы знаете, что и как делать, чтобы самостоятельно проверить отключающую способность аппарата защиты.

Будет интересно прочитать:

Источник: https://samelectrik.ru/kak-proverit-rabotosposobnost-avtomaticheskogo-vyklyuchatelya.html

ПУЕ, ПУЭ, Раздел 3 Защита и автоматика

Обращайте внимание что хоть ПУЭ и существует с времён СССР на данное время в ПУЭ для России и Украины имеются отличия. На сайте представлена Украинская версия ПУЭ.

Скачать ПУЭ раздел 1 — РАЗДЕЛ 1 ОБЩИЕ ПРАВИЛА

Скачать ПУЭ раздел 2 -РАЗДЕЛ 2 КАНАЛИЗАЦИЯ ЭЛЕКТРОЭНЕРГИИ

Скачать ПУЭ раздел 3 -РАЗДЕЛ 3 ЗАЩИТА И АВТОМАТИКА

Скачать ПУЭ раздел 4 -РАЗДЕЛ 4 РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И ПОДСТАНЦИИ

Скачать ПУЭ раздел 5 -РАЗДЕЛ 5 ЭЛЕКТРОСИЛОВЫЕ УСТАНОВКИ

Скачать ПУЭ раздел 6 -РАЗДЕЛ 6 ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

Скачать ПУЭ раздел 7 -РАЗДЕЛ 7 ЭЛЕКТРООБОРУДОВАНИЕ СПЕЦИАЛЬНЫХ УСТАНОВОК

ПУЭ:

Раздел 1: ОБЩИЕ ПРАВИЛА

  • Глава 1.1. Общая часть
  • Глава 1.2. Электроснабжение и электричкские сети
  • Глава 1.3. Выбор проводников по нагревеву, экономической плотности тока и по условиям короны
  • Глава 1.4.Выбор электрических аппаратов и проводников по условиям короткого замыкания
  • Глава 1.5. Учёт электроэнергии
  • Глава 1.6. Измерение электрических величин
  • Глава 1.7. Заземление и защитные меры электробезопасности
  • Глава 1.8. Нормы приёмо-сдаточных испытаний
  • Глава 1.9. Внешняя изоляция электроустановок

Раздел 2: КАНАЛИЗАЦИЯ ЭЛЕКТРОЭНЕРГИИ

  • Глава 2.1. Электропроводки
  • Глава 2.2. Токоприводы напряжением до 35 кВ
  • Глава 2.3. Кабельные линии напряжением до 220кВ
  • Глава 2.4. Воздушные линии эдектопередачи напряжением до 1кВ
  • Глава 2.5. Воздушные линии элуктопередачи напряжением свыше 1кВ до 750кВ
  • Приложение А методика проверки климатических нагрузок для линий классов безотказности 3КБ и 4КБ
  • Приложение Б методика определения климатических нагрузок для горной местности

Раздел 3: ЗАЩИТА и АВТОМАТИКА

Раздел 4: РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И ПОДСТАНЦИИ

  • Глава 4.1. Распределительные устройства напряжением до 1кВ переменного тока и до 1,5кВ постоянного тока
  • Глава 4.2. Распределительные устройства и подстанции напряжением выше 1кВ
  • Глава 4.3. Преобразовательные подстанции и установки
  • Глава 4.4. Аккумуляторные установки

Раздел 5: ЭЛЕКТРОСИЛОВЫЕ УСТАНОВКИ

  • Глава 5.1. Электромашинные помещения
  • Глава 5.2. Генераторы и синхронные компенсаторы
  • Глава 5.3. Электродвигатели и их коммуникационные аппараты
  • Глава 5.6. Конденсаторные установки

Раздел 6: ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

  • Глава 6.1. Общая часть
  • Глава 6.2. Внутреннее освещение
  • Глава 6.3. Наружное освещение
  • Глава 6.4. Световая реклама, знаки и иллюминация
  • Глава 6.5. Управление освещением
  • Глава 6.6. Осветительные приборы и электроустановочное оборудование

Раздел 7: ЭЛЕКТРООБОРУДОВАНИЕ СПЕЦИАЛЬНЫХ УСТАНОВОК

  • Глава 7.5. Электротермические установки
  • Глава 7.7. Торфяные электроустановки

РАЗДЕЛ 3 ЗАЩИТА И АВТОМАТИКА

Главы 3.1-3.4. ПУЭ-86 (шестое издание, переработанное и дополненное). Министерство энергетики и электрификации СССР, 1986 г.

Глава 3.1. защита электрических сетей напряжением до 1 кв

Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.
Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.

Требования к аппаратам защиты

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т.п.). В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия). Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

Понравилась статья? Поделить с друзьями: