Расчет конденсаторной установки для компенсации реактивной мощности

Содержание

Реактивная мощность

Расчет конденсаторной установки для компенсации реактивной мощности

Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию.

Eмкостная нагрузка в цепи переменного тока за время половины периода накапливает заряд в обкладках конденсаторов и отдаёт его обратно в источник.

Индуктивная нагрузка накапливает магнитную энергию в катушках и возвращает её в источник питания в виде электрической энергии.

Напряжение на выводах реактивного элемента будет достигать максимального значения во время смены направления тока, следовательно, расхождение во времени между напряжением и током в пределах элемента составит четверть периода (сдвиг фаз 90°).

Угол сдвига фаз φ в цепи нагрузки определяется соотношением активного и реактивного сопротивлений нагрузки.

Реактивная мощность характеризует потери, созданные реактивными элементами в цепи переменного тока, и выражается формулой Q = UIsinφ.

Природу потерь в цепи с реактивными элементами можно рассмотреть с помощью графиков на рисунках.

φ = 90°     sin90° = 1     cos90° = 0

При отсутствии активной составляющей в нагрузке, сдвиг фаз между напряжением и током составит 90°.
В начале периода, когда напряжение максимально – ток будет равен нулю, следовательно, мгновенное значение мощности UI в это время будет равно нулю.

В течении первой четверти периода, мощность можно видеть на графике, как произведение UI, которое станет равным нулю при максимуме тока и нулевом значении напряжения.

В следующую четверть периода на графике UI принимает отрицательное значение, следовательно, мощность возвращается обратно в источник питания.

То же самое произойдёт и в отрицательном полупериоде тока. В результате средняя (активная) потребляемая мощность P avg за период будет равна нулю.

В таком случае:

Реактивная мощность Q = UIsin90° = UI

Потребляемая мощность P = UIcos90° =
Полная мощность S = UI = √(P² + Q²) будет равна реактивной мощности
Коэффициент мощности P/S =

При отсутствии реактивных элементов и сдвига фаз в нагрузках, мгновенная мощность в полупериоде Umax*Imax будет максимальной, и в следующем полупериоде произведение отрицательного напряжения с отрицательным током дадут положительный результат – полезную мощность в нагрузке.

φ = 0°     sin90° = 0     cos90° = 1

В этом случае:
Реактивная мощность Q = UIsin0 =
Потребляемая мощность P = UIcos0 = UI
Полная мощность S = UI = √(P² + Q²) будет равна потребляемой мощности
Коэффициент мощности P/S = 1

Ниже представлен рисунок графиков со сдвигом фаз 45°, для случая равенства активного и реактивного сопротивлений в нагрузке.

φ = 45°     sin45° = cos45° = √2/2 ≈ 0.71

Здесь:
Реактивная мощность Q = UIsin45° = 0.71UI
Потребляемая мощность P = UIcos45° = 0.71UI
Полная мощность S = √(P² + Q²) = UI
Коэффициент мощности P/S = 0.71

В примерах рассмотрены случаи с индуктивной нагрузкой, когда ток отстаёт от напряжения (положительный сдвиг фаз). В случаях с ёмкостной нагрузкой, процессы и расчёты аналогичны, только напряжение будет отставать от тока (отрицательный сдвиг фаз).

Угол сдвига фаз в сети определится соотношением активного и реактивного сопротивлений нагрузок в параллельном соединении следующим образом:

XL и соответственно индуктивное и ёмкостное сопротивление нагрузок.Преобладание индуктивных нагрузок будет уменьшать общее индуктивное сопротивление.

Из выражения видно, что угол в этом случае будет принимать положительный знак, а преобладание ёмкостных нагрузок будет уменьшать ёмкостное сопротивление и вызывать отрицательный сдвиг. При равенстве индуктивного и ёмкостного сопротивлений, угол сдвига будет равен нулю.

В бытовых и производственных потребителях индуктивное сопротивление обычно существенно преобладает над ёмкостным.

Подробнее о вычислениях общего угла сдвига φ для вариантов соединений активного и реактивного сопротивлений в нагрузках можно ознакомиться на страничке электрический импеданс.

Компенсация реактивной мощности

Огромное количество индуктивных нагрузок в сети суммарно обладает колоссальной реактивной мощностью, которая возвращается в генераторы и не совершает никакой полезной работы, расходуя энергию на нагрев кабелей и проводов ЛЭП, перегружает трансформаторы, снижая их КПД, тем самым уменьшая пропускную способность активных токов.

Если параллельно индуктивной нагрузке подключить конденсатор, фаза тока в цепи источника будет смещаться в противоположную сторону, компенсируя угол, созданный индуктивностью нагрузки. При определённом соотношении номиналов, можно добиться отсутствия сдвига фаз, следовательно, и отсутствия реактивных токов в цепи источника питания.

Ёмкость конденсатора определяется реактивным (индуктивным) сопротивлением нагрузки, которое необходимо компенсировать:

C = 1/(2πƒX),

X = U²/Q — реактивное сопротивление нагрузки,
Q — реактивная мощность нагрузки.

Компенсация реактивных токов в сети позволяет значительно уменьшить потери на активном сопротивлении проводов ЛЭП, кабелей и обмоток трансформаторов питающей сети.

В целях компенсации реактивной мощности на производственных предприятиях, где основными потребителями энергии являются асинхронные электродвигатели, индукционные печи, люминесцентное освещение, которые обладают индуктивным сопротивлением, часто применяют специальные конденсаторные установки, способные в ручном или автоматическом режиме поддерживать нулевой сдвиг фаз, тем самым минимизировать реактивные потери. В масштабах энергосистемы компенсация происходит непосредственно на электростанциях путём контроля сдвига фаз и обеспечения соответствующего тока подмагничивания роторных обмоток синхронных генераторов станций.

Компенсация реактивной мощности — одна из составляющих комплекса мер по Коррекции Коэффициента Мощности (ККМ) в электросети (Power Factor Correction — PFC в англоязычной литературе). Применяется в целях уменьшения потерь электроэнергии, как на паразитную реактивную, так и нелинейную составляющую искажений тока в энергосистеме. Более подробно с материалом о ККМ (PFC) можно ознакомиться на странице — коэффициент мощности.

Онлайн-калькулятор расчёта реактивной мощности и её компенсации

Достаточно вписать значения и кликнуть мышкой в таблице.

Реактивная мощность Q = √((UI)²-P²) Реактивное сопротивление X = U²/Q Компенсирующая ёмкость C = 1/(2πƒX)

Похожие страницы с расчётами:

Рассчитать импеданс.

Рассчитать частоту резонанса колебательного контура LC.
Рассчитать реактивное сопротивление катушки индуктивности L и конденсатора C.
Альтернативные статьи: Дизель-генератор

Источник: http://tel-spb.ru/rea_q.html

Высоковольтные конденсаторные установки

Конденсаторные установки (6 кв. и 10 кв.) компенсации реактивной мощности для сетей высокого напряжения предназначены, для повышения коэффициента компенсации реактивной мощности электроустановок промышленных предприятий и распределительных сетей напряжением 6 и 10 кВ, частоты 50Гц.

Варианты исполнения установок компенсации реактивной мощности на высокое напряжениеУКЛ(П) 56 (КРМ)УКЛ(П)57 (КРМ)АУКРМ, УКРМ (КРМ)АУКРМФ, УКМФ (КРМФ)
Номинальная , кВ 6,3; 10,5
Номинальная частота, Гц 50
Номинальная , квар от 100 квар и выше (рекомендуем заполнить опросный лист)
Стандартный шаг регулирования, квар 50; 100; 150; 200; 250; 300; 450 возможны другие варианты по требованию Заказчика
Варианты регулирования нерегулируемая / ручное регулирование автоматическое или ручное
Максимальная перегрузка по току, Iном 1,3
Максимальная перегрузка по напряжению, Uном 1,1
Схема соединения конденсаторов треугольник
Тип конденсаторов Однофазные или трёхфазные конденсаторные установки производства РФ или стран Европейского союза. Конденсаторы изготовлены в металлическом корпусе со встроенными разрядными резисторами. Конденсаторы пропитаны экологически безопасной диэлектрической жидкостью и защищены от короткого замыкания предохранителями.
Наличие защиты конденсаторов от токов высших гармоник установки используются в сетях с гармоническими искажениями согласно ГОСТ 13109-97 В составе используюттся в соответствии с параметрами электросети заказчика фильтры гармоник на 134; 189 и 210 Гц
Варианты исполнения металлический шкаф окрашенный полиэфирной композицией по RAL7032 с принудительной вентиляцией; блочно-модульный контейнер северного исполнения с утепленной металлической оболочкой, штатно оборудуется освещением, источником энергии 220В, системой отопления и вентиляции, опционально оборудуется системами пожаротушения и сигнализации, воздушным вводом.В обоих исполнениях возможна окраска в корпоративные цвета заказчика с нанесением логотипа компании (требуется ТЗ)
Варианты климатического исполнения внутреннее У3; наружнее У1; в блочно-модульном контейнере УХЛ1
Класс защиты от IP21 до IP54
Диапазон температур, стандартно от -40 до + 40 металический шкаф, от -60 до + 40 блочно-модульный контейнер
Габаритные размеры стандартно в соттветствии с типономиналом или по ТЗ заказчика
Читайте также  Как проверить мощность светодиодной лампы

Структура условного обозначения типономинала установок расшифровывается следующим образом:

АУКРМ (УКЛ(П))1 – Х2–ХХХ3–ХХХ4–Х5Х6–К7–ХХХ8Х9

1 – установка конденсаторная регулируемая, УКЛ(П) — нерегулируемая буквы Л и П обозначают с какой стороны расположена вводная ячейка, с левой или с правой;

2 – напряжение, кВ;

3 – мощность, кВАр;

4 – мощность минимальной ступени, кВАр;

5 – наличие постоянной ступени: 1 – есть, 0 – нет;

6 – число автоматических ступеней;

7 – контейнерного исполнения;

8 – вид климатического исполнения;

9 – категория размещения.

Используйте эту схему при заказе конденсаторных установок.

Для целей более точного и максимального соответствия заказанного у нас изделия под потребности вашего предприятия предлагаем Вам заполнить прилагаемый опросный лист — это не займет много времени, а в результате вы получите именно то, что Вам нужно. Опросный лист в формате PDF можно скачать здесь или заполнить электронную форму.

Виды реактивной мощности

Современная промышленность не обходится без силовых электроустановок, любое предприятие использует множество станков, электродвигателей, понижающих трансформаторов, стабилизаторов электрического напряжения. Все эти приборы и установки потребляют определенные мощности от электросетей. Все электропотребители работают с разным КПД, уменьшить энергозатраты возможно с помощью установоки  фазного смещения.

Потребляемую мощность можно условно разделить на два вида: это активная и реактивная. Активная (cos ) –это то, из чего складывается КПД электроприбора, расходуется и в полной мере преобразуется в какое то действие: вращение электромоторов, выделение тепла, освещения.

При индуктивной или емкостной нагрузке, ток смещается по фазе относительно напряжения(sin), этот параметр называется реактивной мощностью. Чем меньше смещение, тем больше компенсации реактивной мощности отдается полезной нагрузке.

Реактивная (sin ) – это затраченная энергия на магнитные поля создаваемые устройством и не несущая полезного действия, но она необходима для обеспечения работы прибора (электромоторы, трансформаторы, электромагниты). Для таких потребителей электроэнергии существуют компенсаторы.

Эти приборы позволяют, уравнивая ток и напряжение в фазе отдавать наиболее полнов активную нагрузку, уменьшая потребление электроэнергии устройством и соответственно увеличить экономию. При правильном подборе режима работы, возможно, добиться до 50% экономии электроэнергии.

Для быстрого разряда конденсаторов после их отключения применяются индуктивные или активные разрядные сопротивления, подключенные параллельно к конденсаторной батарее. Без разрядных сопротивлений естественный саморазряд конденсаторные установки до безопасного напряжения 65 В происходит медленно, оставшийся на зажимах отключенной батареи напряжение будет опасным для обслуживающего персонала.

Конденсаторные установки и их применение

Конденсаторные установки компенсации реактивной мощности (КРМ) широко применяются на промышленных предприятиях и различаются на высоковольтные и низковольтные, а так же на местного назначения и общего. Конденсаторные установки КРМ местного (индивидуального) назначения используются для подключения одного устройства.

Централизованные (общие) установки КРМ подключаются на общем вводе энергосети предприятия. Такие УКРМ выпускаются с автоматической регулировкой, обеспечивая подстройку независимо от потребляемой компенсации реактивной мощности оконечными установками. Шаг подстройки так же возможно задавать вручную, изменяя количество конденсаторных блоков .

Принцип действия

Принцип действия конденсаторных установок КРМ основан на компенсировании конденсаторами «провалов» вольтамперных характеристик относительно полуволны переменного напряжения, а включение в конденсаторную батарею дроссельных контуров, обеспечивает сглаживание и фильтрацию паразитных гармоник.

Такое включение так же исключает резонансное биение индуктивности установки и питающей сети. УКРМ выпускаемые промышленностью обеспечивают питание электроприборов от 0.3 до 0.7 КВ для низковольтных устройств и до 12 КВ для высоковольтных.

Защита по току и пожаробезопасности соответствует установленным требованиям для силового электрооборудования.

Конструкция

УКРМ изготовляются в виде металлических шкафов, оборудуются нишами для расположения конденсаторных батарей. Обеспечивается замена или дополнение блоков конденсаторов установки на выдвижных консолях. Предусмотрена вентиляция пассивная или принудительная.

Так же внимание уделено защите от несанкционированного доступа и от поражения электрическим током. Для обслуживания и регламентных работ в некоторых типах шкафов устанавливается электрическая подсветка.

Все электрошкафы предусматривают расположение токовых автоматов или блока предохранителей для защиты от короткого замыкания.

Источник: http://www.kondensator.su/kondensatornye-ustanovki/krm-reactive-power-compensation.html

Конденсаторные установки компенсации реактивной мощности

> Теория > Конденсаторные установки компенсации реактивной мощности

Все виды конденсаторных установок для компенсации реактивной мощности необходимы для стабилизации работы электрических сетей и снижения возможных энергопотерь. В состав этого оборудования входят батареи статических конденсаторов (БСК).

Каждая БСК состоит из параллельно-последовательно соединенных в форме звезды или треугольника косинусных конденсаторов. Батарея оснащена токоограничивающими реакторами, которые нужны для регулировки тока при включении.

Для защиты используется головной выключатель или трансформатор напряжения.

Конденсаторная установка

Благодаря этому процессу, возможно существенно уменьшить нагрузку на:

  • провода;
  • коммутационное оборудование;
  • трансформаторы.

За счет уменьшения искажения формы сопротивления повышаются качество электроэнергии у конечного пользователя и срок службы всего оборудования. Но откуда берутся помехи в подаче тока, и возникает необходимость в компенсации?

Общие вопросы теории

Во всех крупных электрических сетях возникают два вида сопротивлений:

  1. активное – например, у ламп накаливания, электронагревателей;
  2. индуктивное – у электродвигателей, распределительных трансформаторов, сварочного оборудования, люминесцентных ламп.

Общая мощность формируется с учетом этих двух нагрузок. Подробнее эта зависимость показана на картинке ниже.

Как определить фактор мощности

Когда напряжение становится отрицательным, а ток – положительным и наоборот, происходит смещение тока по фазе. В этот момент мощность поступает в обратном направлении в сторону генератора, хотя должна идти на нагрузку. При этом электрическая энергия колеблется от нагрузки к генератору и обратно, вместо того, чтобы переходить по сети. Мощность, которая возникает во время этого процесса, называется реактивной. Такая мощность генерирует магнитное поле, которое также дает дополнительную нагрузку на силовые поля.

Для того чтобы установить полную мощность сети, необходимо определить обе составляющие: и активную, и реактивную. Значение вычисляется, исходя из фактора, или коэффициента, мощности, которым является cosφ – косинус угла, возникающий между кривыми активной и реактивной составляющих.

Активная мощность используется для преобразования в тепловую, механическую и другие полезные виды энергии. Реактивная не подходит для использования в этих целях, но без нее невозможна работа трансформаторов, генераторов и другого оборудования, функционирование которого основано на свойствах электромагнитного поля. Организации, занимающиеся электроснабжением, ведут поставку только активной нагрузки, потому что поставки реактивного сопротивления:

  • увеличивают мощность оборудования за счет снижения пропускной способности;
  • повышают активные потери;
  • приводят к падению напряжения из-за присутствия реактивной составляющей.
Читайте также  Земляная батарея повышенной мощности

Особенности установки компенсационного оборудования

Компенсация реактивной мощности

Удобнее всего генерировать реактивную часть напрямую у потребителя, иначе пользователю придется платить за поставки электричества дважды. Первый раз – за поставку активной, а второй – реактивной части. Кроме того, при такой двойной поставке потребуется дополнительное оборудование. Для чтобы избежать такой ситуации, используются конденсаторные установки компенсации реактивной мощности.

Важно! Установка компенсации реактивной мощности (КРМ) не просто экономит энергию. На промышленных предприятиях России потенциал энергосбережения составляет только 13-15% от общего потребления.

Устройство для компенсации реактивной составляющей

Уровень потребляемой электроэнергии на предприятии постоянно изменяется, то есть cosφ может расти или понижаться. Таким образом, чем больше коэффициент мощности, тем выше активная составляющая и наоборот. Для регулирования данного процесса требуются конденсаторные установки, способные компенсировать реактивную составляющую.

Конденсаторы, на основе которых построена эта компенсационная аппаратура, удерживают значение напряжения на заданном уровне. Ток в конденсаторах в противоположность индуктивности работает на опережение. Таким образом, конденсаторы выступают в роли фазосдвигающего оборудования.

Все конденсаторные установки по компенсации реактивной мощности разделяются на регулируемые и нерегулируемые. Главный недостаток последних заключается в том, что при существенном изменении нагрузки и коэффициента мощности, возможна перекомпенсация. Если в цепи имеется вероятность существенного роста cosφ, использовать нерегулируемого КРМ не рекомендуется.

Регулируемые устройства способны работать в динамическом режиме, проводить мониторинг и отслеживать показания для дальнейшего анализа. Контроллер, входящий в состав этого оборудования, прямо на месте отслеживает и рассчитывает сразу несколько показателей:

  • уровень реактивной нагрузки во внешней цепи;
  • определяет существующий коэффициент мощности;
  • сравнивает коэффициент с заданными значениями.

Если полученное значение отличается от эталона, регулятор подключает или отключает определенные конденсаторы, входящие в компенсаторную установку.

Использование этого оборудования дает возможность полностью контролировать уровень подачи электроэнергии на предприятиях с большим количеством разных по назначению приборов.

Особенно это важно, если точно отследить, как изменяется реактивная составляющая по сети, довольно сложно. Общий принцип компенсирования позволяет не устанавливать у каждого прибора с реактивной составляющей отдельного оборудования.

Эффективность применения конденсаторных установок

Несмотря на то, что удобнее всего компенсировать реактивную составляющую напрямую у потребителя, для улучшения качества поставляемой электроэнергии первые установки используются еще на подстанциях. Это дает возможность разгрузить сеть и уже сэкономить от 10 до 20% энергии. Поэтому на подстанциях в 0,4 кВ проводится переключение пользователей с перегруженных фаз на недогруженные.

Индивидуальные, групповые централизованные КРМ

У непромышленных абонентов качественно выровнять фазы, используя только одну конденсаторную установку, практически невозможно. Особенно это касается жилых зданий с однофазной нагрузкой. Здесь компенсацию проводят на каждой фазе и дополнительно используют фильтры, емкость которых можно менять в автоматическом режиме.

Номинальное напряжение конденсаторных установок может быть самым разным. Высоковольтное оборудование 6, 10, 35кВ используют на подстанциях. Низковольтные устройства 0,4-0,66кВ применяют непосредственно на нагрузках. За счет высокого быстродействия низковольтные приборы могут стабилизировать не только постоянную, но и скачкообразную реактивную мощность.

В общем случае компенсация реактивной мощности состоит из 2 этапов:

  1. Централизованный мониторинг качества (грубая компенсация) путем выравнивания фаз и фильтрации тока на подстанциях;
  2. Индивидуальная компенсация на промышленных предприятиях, их отдельных подразделениях, а также на уровне мелких потребителей – владельцев квартир и частных домов. В ходе этих работ устройство компенсации реактивной мощности уменьшает энергопотери за счет обеспечения синусоидальности тока.

Раньше проблемы энергосбережения у небольших потребителей практически не брались во внимание. Считалось, что реактивная составляющая оказывает влияние только на работу крупных предприятий, где используются индукционные печи, асинхронные двигатели, понижающие трансформаторы и другие приборы.

Конденсаторные установки на подстанциях

Но в последнее время количество используемого преобразовательного и стабилизирующего оборудования в социально-бытовой среде значительно увеличилось. Полупроводниковые преобразователи ухудшают форму кривой тока, тем самым негативно влияют на функционирование других приборов. Но пока устройства КРМ для частных коммунально-бытовых потребителей почти не применяются.

Источник: https://elquanta.ru/teoriya/kondensatornye-ustanovki-kompensacii-reaktivnojj-moshhnosti.html

Укрм — установка компенсации реактивной мощности

Нагрузка предприятий подразделяется на активную, индуктивную и емкостную, все эти виды мощностей зависят от типа работающего оборудования.

Существование реактивной энергии несет отрицательное воздействие на электрические сети, создает электромагнитные поля в электрических устройствах.

Существование реактивного тока создает дополнительную нагрузку, приводящую к снижению качества электроэнергии, влекущую увеличение сечений токовых проводников.

Назначение устройства компенсации реактивной мощности

Рис. Внешний вид УКРМ 6(10) кВ

Основным предназначением устройства является снижение действия реактивной мощности, служит для увеличения и поддержания на определенном нормативном уровне величины коэффициента мощности в трехфазных распределительных сетях. Главное предназначение УКРМ, является аккумуляция в конденсаторах реактивной мощности. Это действие помогает разгрузить электрическую сеть от перетоков реактивной мощности, происходит стабилизация напряжения, увеличивается доля активной мощности.

Основные функции УКРМ

  1. Понижение потребляемого нагрузочного тока на 30-50%.
  2. Снижение составляющих элементов распределительной сети, увеличение их срока службы.
  3. Повышение надежности и пропускной способности электрической сети.
  4. Понижение тепловых потерь электрического тока.
  5. Снижение воздействия высших гармоник.
  6. Понижение несимметричности фаз, сглаживание сетевых помех.

  7. Снижение до минимума стоимости индуктивной мощности.

Установка компенсации реактивной мощности УКРМ отличается рядом преимуществ, обусловленных применением конденсаторов, дополненных третьим уровнем безопасности в виде полипропиленовой сегментируемой пленки пропитанной специальной жидкостью, обеспечивающих надежное использование, долговечность, невысокую стоимость при выполнении работ по техническому обслуживанию и ремонту.

Наличие в конденсаторной установке УКРМ специализированных тиристорных быстродействующих пускателей, работающих с опережением по времени для коммутации фазовых конденсаторов, срабатывающих при изменении cosφ, продляет время их безотказной работы.

Рис. Внешний вид тиристора для коммутации конденсаторных установок.

Для обеспечения регулирования cosj в автоматическом режиме с передачей информации на PC с контролем в сети высших гармоник тока и напряжения, применяются контроллеры с контакторным переключением.

Для повышения качества работы УКРМ в установке присутствует фильтр нечетных гармоник и устройства терморегуляции, для обнаружения неисправностей продумана система индикации.

Все оборудование помещается в блок-контейнер, снабженный вентиляцией и обогревом с автоматическим управлением. Устройства обеспечивают комфортное и удобное обслуживание при низких температурах до -60о С.

Модульный тип построения, способствует поэтапному наращиванию мощности УКРМ.

Защита конденсаторных установок

Для безопасной работы устройства предусмотрены защиты:

  1. Блокировки, обеспечивающие защиту от прикосновения к токоведущим частям, находящимся под напряжением.
  2. Защита, предохраняющая установку от короткого замыкания конденсатора.
  3. От превышения нормы электрического тока.
  4. От перенапряжения.
  5. От перекоса токов по фазам устройства.
  6. Электромагнитное блокирование, предохраняющее от ошибочного включения коммутационных аппаратов УКРМ.
  7. Механическое блокирование включения заземляющих ножей в работающей установке.
  8. Наличие контактного выключателя, отключающего установку при открывании дверей при включенном оборудовании.
  9. Тепловая защита, включающая принудительное охлаждение при повышении температуры конденсаторных батарей.
  10. Термодатчик включающий обогрев в установке при понижении температуры.

Достоинства устройства конденсаторной установки УКРМ

  1. Наличие трехфазных пожарозащищенных экологических конденсаторов.
  2. Применение в устройстве специальных предохранителей и разрядников сопротивления с обкладками из полимерной металлизированной пленки с минеральной пропиткой.
  3. Регуляторы реактивной мощности и цифровые анализаторы с дистанционным управлением.
  4. Для повышения сейсмоустойчивости и вибрационной стойкости применяются специальные полимерные изоляторы.
Читайте также  Регулятор оборотов с поддержанием мощности своими руками

Типы УКРМ

Существуют несколько типов установок УКРМ, применяемых в сетях 6-10 кВ, это:

  1. Нерегулируемые установки, выполненные в модульном построении, состоящем из нескольких фиксированных ступеней,коммутация происходит в ручном режиме при отсутствии токов нагрузки.
  2. Автоматические или регулируемые, базовое устройство предназначено для автоматического регулирования ступеней, каждая из которых состоит из трех конденсаторов, соединенных в звезду, операции по осуществлению коммутационных действий производят автоматически с использованием электронного блока, определяющего мощность и время включения.
  3. Полуавтоматические установки применяются для снижения стоимости устройства компенсации реактивной мощности, цена становится доступной с одновременным сохранением качества работы устройства. Для этого в устройстве применяются, как регулированные ступени, так и фиксированные.
  4. Высоковольтные установки с фильтрами, применяемыми для защиты от нелинейных гармонических искажений защитных антирезонансных дросселей. Применяются такие установки совместно с устройствами, генерирующими явление в сети высших гармоник, это: устройства, обеспечивающие плавный пуск и частотные преобразователи.

Таблица №1 Типы конденсаторных установок с указанием мощности ступеней.

В модульных установках КРМ ступени конструктивно объединены в модуль

Особенности подключения УКРМ

Самым оптимальным подключением устройства компенсации реактивной мощности, является установка устройства в непосредственной близости к потребителю (индивидуальная компенсация). В этом случае, стоимость установки компенсации реактивной мощности, состоящая из суммы стоимости внедрения и дальнейшего обслуживания составляет значительную величину.

При объединении нагрузок в единый комплекс по потреблению реактивной мощности, целесообразно применять групповую компенсацию. В этом случае применение цена устройства реактивной мощности становится наиболее приемлемой при внедрении в работу, но менее выгодной для пользователей из-за понижения активных потерь, в электрической сети оказывающих влияние на экономию средств.

Возможно, подключение устройства КРМ в виде отдельного оборудования с индивидуальным кабельным вводом, так и в составе НКУ, к примеру, в составе главного распределительного щита.

Расчет УКРМ

Для выбора УКРМ производится подсчет полной суммарной мощности конденсаторных батарей электроустановки, по формуле:

Qc = Px (tg(1)-tg(ф2)).

Где Р – активная мощность электроустановкиПоказания (tg(ф1) -tg(ф2)) находятся по данным cos(ф1) и cos(ф2)Значение cos(ф1) коэффициента мощности до установки УКРМ

Значение cos(ф2) коэффициента мощности после установки УКРМ, задается электроснабжающим предприятием.

Формула мощности приобретает такой вид:

Qc = P x k,

k- табличный коэффициент, соответствующий значениям коэффициента мощности cos(ф2)

Мощность УКРМ определяется конкретно для всех участков электрической сети в зависимости от характера нагрузки и способа компенсации.

Только после проведенного в полной мере анализа показателей, полученных при диагностике данных, появляется возможность выбора регулируемых или нерегулируемых УКРМ.

Обозначается степень дробления мощности по ступеням, время и скорость повторного срабатывания ступеней, выявляется необходимость использования в конденсаторной установке компенсации реактивной мощности для снижения коэффициента несинусоидальности в питающей сети, фильтрации нечетных гармоник, а также отсутствие эффекта резонанса. Это обеспечивает качество электроэнергии.

Таблица№2 Расчет мощности конденсаторов для УКРМ

Необходимо знать, что нельзя производить полную компенсацию реактивной мощности до единицы, это приводит к перекомпенсации, которая может произойти в результате непостоянного значения активной мощности потребителя, а также в результате случайных факторов. Желательное значение cosф2 от 0,90 до 0,95.

Источник: http://enargys.ru/ukrm-ustanovka-kompensatsii-reaktivnoy-moshhnosti/

Как рассчитать мощность конденсаторной установки

Практически каждое предприятие-потребитель электроэнергии сталкивалось с необходимостью использования конденсаторных установок (УКРМ) для компенсации реактивной мощности.

Как правильно рассчитать мощность конденсаторной установки? В Интернете можно найти множество сайтов с описанием методики расчета, однако зачастую эти расчеты приводят к абсурдным результатам.

Здесь мы рассмотрим два подхода к расчету мощности конденсаторной установки и попытаемся понять, какой из них наиболее подходит в том или ином случае. При расчетах мы будем в практическом плане ориентироваться на УКРМ 0,4 кВ, хотя аналогичные расчеты можно провести и для конденсаторных установок 6-10 кВ.

Расчет по требуемому коэффициенту мощности с использованием номограмм

Подавляющее большинство описанных в Интернете методов расчета мощности конденсаторных установок опираются на этот подход (см. книгу В.П.Ильяшов. Автоматическое регулирование мощности конденсаторных установок. 1977).

Для определения мощности конденсаторной установки используется следующая формула

Q = P * K

где Q — реактивная мощность конденсаторной установки; P — активная мощность компенсируемого потребителя; K — коэффициент, вычисляемый из соотношения естественного и требуемого коэффициента мощности (cos φ).

Коэффициент К вычисляется по номограмме (см. рис.) либо по аналогичной таблице.

Номограмма показывает, исходя из значений естественного и требуемого коэффициента мощности (cos φ), необходимую удельную реактивную мощность конденсаторной установки в расчете на единицу потребляемой активной мощности.

Например, если естественный cos φ = 0,7, а заданная величина cos φ = 0,93 и активная нагрузка составляет 2500 кВА, то по кривым номограммы находим удельную величину потребной мощности конденсаторной установки, равную 0,62 кВАр/кВт; отсюда потребная мощность конденсаторной установки получается 0,62-2500=1550 кВАр. Запомним это значение.

Расчет на основе баланса мощности

В ряде случаев, например, если конденсаторная установка устанавлена на трансформаторной подстанции, при определении ее мощности необходимо учитывать характеристики снабжающей энергосистемы, то есть трансформатора.

В принятых в СССР в 1974 году «Указаниях по компенсации реактивной мощности в распределительных сетях» были установлены исходные данные для определения мощности компенсирующих устройств, которые определяются предельными величинами реактивной мощности и могут быть переданы потребителю от энергосистемы в режимах наибольших и наименьших реактивных нагрузок (Б.Ю.Липкин. Электроснабжение промышленных предприятий и установок, 1981).

Мощность Q компенсирующего устройства определяется как разность между фактической наибольшей реактивной мощностью Q1 нагрузки потребителя и предельной реактивной мощностью Q2, предоставляемой предприятию энергосистемой по условиям режима ее работы:

Q = Q1 — Q2 = P (tg φ1 — tg φ2)

где P — мощность активной нагрузки потребителя, tg φ1 — фактический (естественный) тангенс угла, соответствующего коэффициенту мощности cos φ1, а tg φ2 — оптимальный (требуемый) тангенс угла, соответствующий коэффициенту мощности, установленному потртебителю условиями снабжающей энергосистемы (трансформатора).

В рассмотренном выше примере активная мощность трансформатора составляет 2500 кВА, а его реактивная мощность (по паспортным данным) — 1900 кВА. В результате, поскольку часть реактивной мощности поставляется трансформатором, компенсации подлежит только разница реактивной мощности в 650 кВА, что более, чем в два раза меньше значения, полученного первым методом.

Сравнение расчетов и выводы

Рассчитанная по первому методу требуемая мощность кондесаторной установки выглядит завышенной. Стоимость конденсаторной установки для рассмотренного в примере значения активной мощности 2500 кВА составит более 750 тыс. руб., что соответсвует почти 20% стоимости всей подстанции.

Причина завышения результата состоит в том, что этот метод расчета не принимает во внимание характеристики снабжающей энергосистемы, предполагая ее составе только активную мощность.

В действительности, как показывает второй метод расчета, снабжающая энергосистема может обладать гораздо большей мощностью и включать не только активную но и реактивную составляющую.

Учет этого обстоятельства позволяет значительно снизить требования к мощности конденсаторной установки и сэкономить значительные средства.

В течение дня мы подготовим для вас предложение со стоимостью и сроком поставки

Или просто позвоните специалисту по телефону +7 910-973-00-28

Источник: http://tmtrade.ru/index.php/kak-pravilno-rasschitat-moshchnost-kondensatornoj-ustanovki

Понравилась статья? Поделить с друзьями:
Добавить комментарий