Применение электрического тока в металлах

Электрический ток в металлах — материалы для подготовки к ЕГЭ по Физике

Применение электрического тока в металлах

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в металлах

В этом листке мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах — твёрдых телах, жидкостях и газах.

Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов, которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.

Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.

Мы много раз говорили о свободных электронах, которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.

Свободные электроны

Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.

Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.

Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов.

Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла).

В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1).

Рис. 1. Свободные электроны

Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.

Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника.

Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны.

Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.

Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно.

Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости).

Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.

Опыт Рикке

Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?

Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э.Рикке в 1901 году.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 2). По этой цепи пропускался электрический ток в течение года.

Рис. 2. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.

Опыт Стюарта–Толмена

Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т.Стюарта и Р.Толмена (1916 год).

Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л.И.Мандельштамом и Н.Д.Папалекси. Они обратили внимание на так называемый электроинерционный эффект: если резко затормозить движущийся проводник, то в нём возникает кратковременный импульс тока. Эффект объясняется тем, что в течение небольшого времени после торможения проводника его свободные заряды продолжают двигаться по инерции.

Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.

Читайте также  Прозвонка электрических цепей своими руками

Установка Стюарта и Толмена показана на рис. 3.

Рис. 3. Опыт Стюарта–Толмена

Катушка большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору — баллистическому гальванометру, который позволяет измерять проходящий через него заряд.

После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение заряда одной частицы к её массе. Оно оказалось равно отношению для электрона, которое в то время уже было хорошо известно.

Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны. Как видите, этот давно и хорошо знакомый вам факт был установлен сравнительно поздно — учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экcпериментах по электромагнетизму (сравните, например, с датой открытия закона Ома — 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году).

Зависимость сопротивления от температуры

Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?

Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает.

Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами (Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)).

Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.

Как опять-таки показывает опыт, зависимость сопротивления металлического проводника от температуры с хорошей точностью является линейной:

(1)

Здесь — сопротивление проводника при . График зависимости (1) является прямой линией (рис. 4).

Рис. 4.

Множитель называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.

Длина проводника и его площадь поперечного сечения при изменении температуры меняются несущественно. Выразим и через удельное сопротивление:

и подставим эти формулы в (1). Получим аналогичную зависимость удельного сопротивления от температуры:

Коэффициент весьма мал (для меди, например, ), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.

Рис. 5. Вольт-амперная характеристика лампочки

Так, на рис. 5 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.

Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается «пунктирной» линейной зависимостью тока от напряжения.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/elektricheskij-tok-v-metallax/

Электрический ток в металлах

Определение 1

Электрическим током в металлах называют упорядоченное движение электронов под действием электрического поля.

Исходя из опытов, видно, что металлический проводник вещество не переносит, то есть ионы металла не участвуют в передвижении электрического заряда.

Носители тока в металлах

При исследованиях были получены доказательства электронной природы тока в металлах. Еще в 1913 году Л.И. Мандельштам и Н.Д. Папалекси выдали первые качественные результаты. А в 1916 году Р. Толмен и Б. Стюарт модернизировали имеющуюся методику и выполнили количественные измерения, которые доказывали, что движение электронов происходит под действием тока в металлических проводниках.

Рисунок 1.12.1 показывает схему Толмена и Стюарта. Катушка, состоящая из большого количества витков тонкой проволоки, приводилась в действие при помощи вращения вокруг своей оси. Ее концы были прикреплены к баллистическому гальванометру Г. Производилось резкое торможение катушки, что было следствием возникновения кратковременного тока, обусловленного инерцией носителя заряда. Измерение полного заряда производилось при помощи движения стрелок гальванометра.

Рисунок 1.12.1. Схема опыта Толмена и Стюарта.

Во время торможения вращающейся катушки сила F=-mdυdt, называемая тормозящей, действовала на каждый носитель заряда е. F играла роль сторонней силы, иначе говоря, неэлектрического происхождения. Именно эта сила, характеризующаяся единицей заряда, является напряженностью поля сторонних сил Eст  :

Eст=-medυdt.

То есть при торможении катушки происходит возникновение электродвижущей силы δ, равной δ=Eстl=medυdtl, где l – длина проволоки катушки. Определенный промежуток времени процесса торможения катушки обусловлен протеканием по цепи заряда q:

q=∫Idt=1R∫δdt=melυ0R.

Данная формула объясняет, что l – это мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки. Видно, что определение удельного заряда em в металлах производится, исходя из формулы:

em=lυ0Rq.

Величины, находящиеся с правой стороны, можно измерить. Основываясь на результатах опытов Толмена и Стюарта, установили, что носители свободного заряда имеют отрицательный знак, а отношение носителя в его массе близко по значению удельного заряда электрона, получаемого в других опытах. Было выявлено, что электроны – это носители свободных зарядов.

Современные данные показывают, что модуль заряда электрона, то есть элементарный заряд, равняется e=1,60218·10-19 Кл, а обозначение его удельного заряда – em=1,75882·1011 Кл/кг.

При наличии отличной концентрации свободных электронов есть смысл говорить о хорошей электропроводимости металлов. Это выявили еще перед опытами Толмена и Стюарта. В 1900 году П. Друде, основываясь на гипотезе о существовании свободных электронов в металлах, создал электронную теорию проводимости металлов. Ее развил и расширил Х.

Лоренц, после чего она получила название классическая электронная теория. На ее основании поняли, что электроны ведут себя как электронный газ, похожий на идеальный по своему состоянию. Рисунок 1.12.2 показывает, каким образом он может заполнить пространство между ионами, которые уже образовали кристаллическую решетку металла.

Читайте также  Что называется электрическим сопротивлением

Рисунок 1.12.2. Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов.

Потенциальный барьер. Движение электронов в кристаллической решетке

Определение 2

После взаимодействия электронов с ионами первые покидают металл, преодолевая только потенциальный барьер.

Высота такого барьера получила название работы выхода.

Наличие комнатной температуры не позволяет электронам проходить этот барьер. Потенциальная энергия выхода электрона после взаимодействия с кристаллической решеткой намного меньше, чем при удалении электрона из проводника.

Определение 3

Расположение е в проводнике характеризуется наличием потенциальной ямы, глубина которой получила название потенциального барьера.

Ионы, образующие решетку, и электроны принимают участие в тепловом движении. Благодаря тепловым колебаниям ионов вблизи положений равновесий и хаотичному движению свободных электронов, при столкновении первых со вторыми происходит усиление термодинамического равновесия между электронами и решеткой.

Теорема 1

По теории Друде-Лоренца имеем, что электроны имеют такую же среднюю энергию теплового движения, как и молекулы одноатомного идеального газа. Это делает возможным оценивание средней скорости υт¯ теплового движения электронов, используя молекулярно-кинетическую теорию.

Комнатная температура дает значение, равное 105 м/с.

Если наложить внешнее электрическое поле в металлический проводник, тогда произойдет тепловое упорядоченное движения электронов (электрический ток), то есть дрейф. Определение средней его скорости υд¯ выполняется по интервалу имеющегося времени ∆t через поперечное сечение S проводника электронов, которые находятся в объеме Sυд∆t.

Количество таких е равняется nSυд∆t, где n принимает значение средней концентрации свободных электронов, равняющейся числу атомов в единице объема металлического проводника. За имеющееся количество времени ∆t через сечение проводника проходит заряд ∆q=enSυд∆t.

Тогда I=∆q∆t=enSυд или υд=IenS.

Концентрация n атомов в металлах находится в пределах 1028-1029м-3.

Формула дает возможность оценить среднюю скорость υд¯ упорядоченного движения электронов со значением в промежутке 0,6-6 мм/с для проводника с сечением 1 мм2 и проходящим током в 10 А.

Определение 4

Средняя скорость υд¯ упорядоченного движения электронов в металлических проводниках на много порядков меньше скорости υт их теплового движения υд≪υт.

Рисунок 1.12.3 демонстрирует характер движения свободного е, находящегося в кристаллической решетке.

Рисунок 1.12.3. Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа υд¯∆t сильно преувеличены.

Наличие малой скорости дрейфа не соответствует опыту, когда ток всей цепи постоянного тока устанавливается мгновенно. Замыкание производится при помощи воздействия электрического поля со скоростью c=3·108 м/с. По прошествии времени lc (l — длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля. В ней происходит упорядоченное движение электронов.

Классическая электронная теория металлов предполагает, что их движение подчинено законам механики Ньютона. Данная теория характеризуется тем, что происходит пренебрежение взаимодействием электронов между собой, а взаимодействие с положительными ионами расценивается как соударения, при каждом из которых e сообщает накопленную энергию решетке. Поэтому принято считать, что после соударения движение электрона характеризуется нулевой дрейфовой скоростью.

Абсолютно все выше предложенные допущения приближенные. Это дает возможность объяснения законов электрического тока в металлических проводниках, основываясь на электронной классической теории.

Закон Ома

Определение 5

В промежутке между соударениями на электрон действует сила, равняющаяся по модулю eE, в результате чего получает ускорение emE.

Конец свободного пробега характеризуется дрейфовой скоростью электрона, которую определяют по формуле

υд=υдmax=eEmτ.

Время свободного пробега обозначается τ. Оно способствует упрощению расчетов для нахождения значения всех электронов. Средняя скорость дрейфа υд равняется половине максимального значения:

υд=12υдmax=12eEmτ.

Если имеется проводник с длиной l, сечением S с концентрацией электронов n, тогда запись нахождения тока в проводнике имеет вид:

I=enSυд=12e2τnSmE=e2τnS2mlU.

U=El – это напряжение на концах проводника. Формула выражает закон Ома для металлического проводника. Тогда электрическое сопротивление необходимо находить:

R=2me2nτlS.

Удельное сопротивление ρ и удельная проводимость ν выражаются как:

ρ=2me2nτ; ν=1ρ=e2nτ2m.

Закон Джоуля-Ленца

Конец пробега электронов под действием поля характеризуется кинетической энергией

12m(υд)max2=12e2τ2mE2.

Определение 6

Исходя из предположений, энергия при соударениях передается решетке, а в последствии переходит в тепло.

Время ∆t каждого электрона испытывается ∆tτ соударений. Проводник с сечение S и длиной l имеет nSl электронов. Тогда выделившееся тепло в проводнике за ∆t равняется

∆Q=nSl∆tτe2τ22mE2=ne2τ2mSlU2∆t=U2R∆t.

Данное соотношение выражает закон Джоуля-Ленца.

Благодаря классической теории, имеет место трактовка существования электрического сопротивления металлов, то есть законы Ома и Джоуля-Ленца. Классическая электронная теория не в состоянии ответить на все вопросы.

Она не способна объяснить разницу в значении молярной теплоемкости металлов и диэлектрических кристаллов, равняющейся 3R, где R записывается как универсальная газовая постоянная. Теплоемкость металла не зависит от количества свободных электронов.

Классическая электронная теория не объясняет температурную зависимость удельного сопротивления металлов. По теории ρ~T, а исходя из экспериментов – ρ~T. Примером расхождения теории с практикой служит сверхпроводимость.

Сопротивление металлического проводника

Исходя из классической теории, удельное сопротивление металлов должно постепенно уменьшаться при понижении температуры, причем остается конечным при любой T. Данная зависимость характерна для проведения опытов при высоких температурах. Если T достаточно низкая, тогда удельное сопротивление металлов теряет зависимость от температуры и достигает предельного значения.

Особый интерес представило явление сверхпроводимости. В 1911 году его открыл Х. Каммерлинг-Оннес.

Теорема 2

Если имеется определенная температура Tкр, различная для разных веществ, тогда удельное сопротивление уменьшается до нуля с помощью скачка, как изображено на рисунке 1.12.4.

Пример 1

Критической температурой для ртути считается значение 4,1 К, для алюминия – 1,2 К, для олова – 3,7 К. Наличие сверхпроводимости может быть не только у элементов, но и у химических соединений и сплавов.

Читайте также  Полотенцесушитель водяной и электрический одновременно

Ниобий с оловом Ni3Snимеют критическую точку температуры в 18 К. Существуют вещества, которые при низкой температуре переходят в сверхпроводящее состояние, тогда как в обычных условиях ими не являются.

Серебро и медь являются проводниками, но при понижении температуры сверхпроводниками не становятся.

Рисунок 1.12.4. Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник.

Сверхпроводящее состояние говорит об исключительных свойствах вещества. Одним из важнейших является способность на протяжении длительного времени поддерживать электрический ток, возбужденный в сверхпроводящей цепи, без затухания.

Классическая электронная теория не может объяснить сверхпроводимость. Это стало возможным спустя 60 лет после его открытия, основываясь на квантово-механических представлениях.

Рост интереса к данному явлению увеличивался по мере появления новых материалов, способных обладать высокими критическими температурами. В 1986 было обнаружено сложное соединение с температурой Tкр=35 К. На следующий год сумели создать керамику с критической Т в 98 К, которая превышала Т жидкого азота (77 К).

Определение 7

Явление перехода веществ в сверхпроводящее состояние при Т, превышающих температуру кипения жидкого азота, называют высокотемпературной сверхпроводимостью.

Позже в 1988 году создали Tl-Ca-Ba-Cu-O соединение с критической Т, достигающей 125 К. На данный момент ученые заинтересованы в поиске новых веществ с наиболее высокими значениями Tкр. Они рассчитывают на получение сверхпроводящего вещества при комнатной температуре. Если это будет сделано, произойдет революция в науке и технике. До настоящего времени все свойства и механизмы состава сверхпроводимых керамических материалов до конца не исследованы.

Источник: https://Zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/elektricheskij-tok-v-metallah/

Что такое проводимость

Основой любого твердого химического элемента является кристаллическая решетка, состоящая из атомов вещества, вокруг которых вращаются связанные электроны.

И, если решетка стабильна, то возникает вопрос: какие частицы создают электрический ток в металлах, а точнее – участвуют в его переносе? Помимо атомов вещества со связанными заряженными частичками, межатомное пространство заполнено и свободными электронами.

Именно эти заряженные частицы, при воздействии на них электрического поля, начинают двигаться определенным образом, и обеспечивают тем самым, протекание тока.

Важно, что суммарный заряд всех свободных электронов равен суммарному заряду ионов, которые находятся в узлах решетки, но отличен по знаку (ионы – положительно заряжены, а электроны – отрицательно) – именно поэтому структура и стабильна. Если бы не было этих самых свободных заряженных частиц, то кулоновские силы разорвали бы кристаллическую решетку. Однако электроны уравновешивают действие этих сил, и вся «конструкция» остается в покое.

Чем больше таких свободных частиц присутствуют между атомами, тем сильнее проводимость материала. К примеру, медь проводит ток лучше железа именно из-за того, что в межатомном пространстве меди находится очень много свободных зарядов, способных проводить ток.

Электрический ток движется по проводам со скоростью, приближенной к скорости света, хотя сами свободные заряженные частицы двигаются значительно медленнее, и не покидают пределы проводника.

Это означает, что ток в металлических проводниках создается электронами, которые принимают участие в переносе заряда, но не «расходуются» при этом процессе.

  Таким образом, получается, что электрический ток в металлах представляет собой лишь упорядоченное движение заряженных частиц под действием поля, и не может накапливаться в проводнике.

Сопротивление проводника

Абсолютно любой элемент, каким бы проводимым он ни был, обладает сопротивлением. При воздействии электрического поля на свободные заряженные частицы, они начинают двигаться, условно говоря, от плюса к минусу. В процессе движения, электроны рассеиваются на так называемых неоднородностях решетки: дефектах, примесях и нарушениях строения. Это вызывает нагрев проводника, и характеризуется таким понятием, как сопротивление металлов.

Чем больше электронов теряется по пути от начала проводника до его конца, тем выше сопротивление данного участка проводимости. Помимо физических характеристик самого материала (удельного сопротивления, являющегося справочной величиной), из которого изготовлен проводник, на сопротивление имеют влияние форма, а также площадь сечения проводника.

Если участок проводимости однороден по составу, то его сопротивление можно узнать, применив формулу: R = p*l/S, где p — удельное сопротивление материала,  l – длинна проводника, а S – площадь сечения.

Удельное сопротивление основных материалов, используемых в электротехнике, представлено ниже, в сводной таблице электрического сопротивления металлов:

Интересная особенность металлических проводников: при уменьшении температуры, сопротивление материала падает, а при достижении температур порядка нескольких Кельвинов – снижается практически до нуля. На этом эффекте основано явление сверхпроводимости.

Электрохимический ряд напряжений металлов

Помимо сопротивления, металлические проводники имеют такую характеристику как электрохимический потенциал. Если говорить просто, то это значение характеризует сравнительную активность вещества при протекании реакций окисления и восстановления в условиях водного раствора.

Электрический ряд напряжений металлов был известен еще средневековым ученым-алхимикам, однако к современному виду его привел Алессандро Вольта в 1793 году. При конструировании своего гальванического столба, он установил соотношение активности известных ему металлов Zn, Pb, Sn, Fe, Cu, Ag, Au, которое зависит от положения элемента в этом ряду.

Чем дальше находятся элементы друг от друга по списку, тем выше будет степень их взаимодействия.

Уже в 1798 году Иоганн Риттер указал на схожесть ряда Вольта с рядом окисления металлов (уменьшение их активности взаимодействия с кислородом). По его гипотезе, в результате протекания химической реакции возникает электричество. А вот его качественные показатели как раз и зависят от того, какие металлы взаимодействуют. Таким образом, был сформирован ряд напряжений, который дополнялся вновь открываемыми химическими элементами:

На практике электрохимический ряд напряжений металлов используется при подборе катода и анода для наиболее эффективного восстановления металла из раствора, или же наоборот – наиболее активного взаимодействия для получения электроэнергии.

Для более подробного изучения вопроса, а также понимания того, как движется электрический ток в металлах, советуем вам посмотреть это видео:

Источник: https://electroadvice.ru/eto-interesno/elektricheskij-tok-v-metallax/

Понравилась статья? Поделить с друзьями:
Добавить комментарий