При каком напряжении выгоднее передавать электрическую энергию

Содержание

Передача электроэнергии: популярные способы и альтернативные варианты

При каком напряжении выгоднее передавать электрическую энергию

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры.Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы.Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные – более 750-ти кВ.Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи.

Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием.

Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные – к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором – потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ) Протяженность (км)
0,40 1,0
10,0 25,0
35,0 100,0
110,0 300,0
220,0 700,0
500,0 2300,0
1150,0* 4500,0*

* – на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

Читайте также  Как правильно выбрать электрический чайник

С инверсией (процесс  полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Источник: https://www.asutpp.ru/peredacha-jelektrojenergii.html

Передача электроэнергии: 3 составляющие схемы

Передача электроэнергии осуществляется по высоковольтным проводам Главой задачей, которую решают энергетические комплексы можно считать передача потребителям электрической энергии через расстояние. По этой причине можно заметить специальные линии, которые идут от станций к пользователям.

Чаще всего используют линии воздушного типа, по которым перемещается переменный ток. С помощью таких установок вырабатывается энергия, которая поставляется к более слабым потребителям. Была создана сильная структура разветвленного характера, для того чтобы охватить все сети с электрической энергией.

Главный показатель, который характеризует передачу электричества – это пропускная способность. Она представлена в виде максимальной мощности перемещающейся по линиям даже в ограниченных условиях.

Сама схема передачи энергии включает в себя 3 компонента:

  • Повышающий трансформатор;
  • Высоковольтная линия передач;
  • Понижающий трансформатор.

Согласно этой схеме электричество передается от главного генератора к потребителю.

Что касается ограниченных условий, то здесь можно назвать определенные потери в процессе нагрева проводов, потери на коронах и другие факторы. Так же мощность передачи будет зависеть от того насколько протяжна ЛЭП и каким напряжением обладает ток. Что касается напряжения, то если ее мощность увеличивается, то и пропускные свойства становятся лучше, а вот с ЛЭП все немного сложнее, так как для повышения производительности нужно создать конструктивное улучшение или же устанавливать компенсирующее устройство.

Постоянная передача электроэнергии на расстояние

Пропускные способности линий электропередач с постоянным током намного выше. Но здесь следует учесть, что потребуются дорогие преобразовательные устройства. По этой причине такой тип передачи электроэнергии всегда выглядит предпочтительнее.

Вышки, через которые проходят высоковольтные провода, обслуживает специальная бригада

На конце, который передает переменный ток, вырабатывается напряжение с помощью генератора, в обычном случае оно составляет 25 кВ, после этого показатель можно увеличить до необходимого уровня. На конце линии электропередачи ток снова принимает состояние переменного, а после этого трансформаторы преобразуют напряжение в тот уровень, которое необходимо для потребителей.

Важным вопросом остается понижение потерь энергии в процессе передачи. Рассматривались способы, которые были основаны на зависимости проводов от температурного режима. Если температура провода будет составлять -209 градусов, то потери снизятся в 10 раз.

Вся суть заключается в том, что большинство металлов и сплавов, а так же интерметаллических соединений не способны активно проводить даже при комнатной температуре. Если же температура будет снижена до 0, то потери значительно уменьшаться.

К недостаткам таких линий электропередач можно отнести:

  • Из-за сильных электрических полей возникает вредное биологическое воздействие на окружающую среду;
  • Полоса отчуждения должна составлять около 1Га при протяженности 1 км.

Не смотря на положительные результаты методики понижения потерь, все способы не были реализованы в жизни, так как оборудование стоит больших затрат.

Передача электроэнергии на большие расстояния

Для того чтобы организовать передачу электрической энергии на большое расстояние чаще всего применяют специальные каналы из проводов сделанных из алюминия, металла или меди. Здесь могут быть организованы несколько типов линий.

А именно:

  • Линии воздушного типа;
  • Подземные кабели экранизированного вида.

И первый, и второй тип распространяет электромагнитную энергию в диэлектрике, и только доля процента теряется при нагреве проводника.

Если используется открытый проводник, то определенная часть энергии при передаче проходит в свободное пространство, и она не значительна. Это происходит в том случае, если линия передачи намного меньше длинны волны.

Как уже было сказано, в настоящее время передачу энергии осуществляют с помощью переменного напряжения. Это можно объяснить тем, что появляется возможность изменять величину напряжения в трансформаторах.

На практике электромагнитное поле распространяется по металлу в проводах на глубину, а общие потери будут зависеть от того сколько примесей ест в металле и от температуры провода. Чем больше будет нагреваться провод, тем больше потерь будет на выходе.

По какому маршруту происходит передача электроэнергии на расстояние

Уже ни для кого не станет секретом, что электроэнергия попадает в наше жилье от электрических станций, которые являются основным источником электрической энергии. Но между этими установками и нашими домами проходят сотни километров, и все это расстояние ток должен сохранить максимальный коэффициент полезного действия.

Итак, как уже было сказано, первоначальным пунктом является станция, которая проводит генерацию энергии.

На сегодняшний день можно выделит следующие станции:

  • ГЭС (гидроэлектростанция);
  • ТЭС (теплоэлектростанция);
  • АЭС (атомная электростанция);
  • Солнечная;
  • Ветровая;
  • Геотермальная.

На электрические станции запрещено проходить людям без специального пропуска

Здесь от основного источника, то есть от станции, электричество передвигается к потребителям, которые могут располагаться на дальнем расстоянии. Для того чтобы передать напряжение, его повышают при помощи установленных трансформаторов. Напряжение может быть повышено до 1100 кВ, показатель будет зависеть от расстояния.

Электроэнергия должна передаваться под высоким напряжением. Дело в том, что в процессе повышения, сила тока будет уменьшена, как результат и сопротивление в проводах. Все эти действия необходимы для сокращения потерь мощности тока.

При передаче электроэнергии на большие расстояния от электростанции осуществляется распределение. Принцип не сложный его можно понять даже впервые взглянув на картинки – схемы. Вся передача зависит на каком расстоянии находится конечная точка и при каком напряжении она работает выгоднее. На последнем этапе, там где находятся структурные объекты, происходит получение постоянного тока в допустимом показателе

В соответствии с этим электроэнергия предается на трансформатор, который повышает показатель, после этого энергия передается на центральную распределительную подстанцию и здесь показатель снижается до потребляемого в 220 или 110 кВ. Именно отсюда происходит распределения на подстанции.

После этого напряжение снижается еще раз уже до показателя 6-10 кВ и направляется в трансформаторные пункты. От них электричество передается в жилые дома, многоэтажки, частные сектора и гаражи.

Если кратко описать схему передачи энергии, то она выглядит так:

  • Электростанция;
  • Повышающий трансформатор;
  • Понижающий трансформатор;
  • Жилой дом.

Передача тока осуществлена по этому маршруту, а все действие можно охарактеризовать как сообщение, которое передается одному объекту. Все показатели заносятся в определенный журнал.

Таким образом, электрическая энергия приходит в наш жилой дом. Схема передачи не очень сложная, и как мы убедились, все зависит от расстояния от исходной точки до потребителя.

Хотелось бы отметить тот факт, что на сегодняшний день является открытым и популярным вопросом передача электричества на расстояние без проводов. Идея было предложено много, но самым успешным вариантом можно считать беспроводную технологию, известную так, же как Wi-Fi. В Вашингтоне ученые уже рассмотрели этот метод и занялись его изучением более подробно.

Как происходит передача электроэнергии (видео)

В данной статье мы рассмотрели, как именно происходит передача электрической энергии на расстояние, то есть от основного источника к нашему жилью. Мы постарались раскрыть выше самые актуальные вопросы, связанные с электричеством и надеемся, что теперь вы поняли, каким именно образом происходит передача энергии, и по какой причине для этого используют высоковольтное напряжение.

Источник: http://6watt.ru/elektrosnabzhenie/peredacha-elektroenergii

Передача электроэнергии на расстояние

> Теория > Передача электроэнергии на расстояние

Произведенную электроэнергию невозможно хранить, ее надо немедленно передавать потребителям. Когда был придуман оптимальный способ транспортировки, началось бурное развитие электроэнергетики.

Передача электроэнергии

История

Первые генераторы строили рядом с потребителями энергии. Они были маломощными и предназначались только для электроснабжения отдельного здания или городского квартала. Но затем пришли к выводу, что гораздо выгоднее возводить крупные станции в районах концентрации ресурсов. Это мощные ГЭС – на реках, крупные ТЭС – рядом с угольными бассейнами. Для этого нужна передача электроэнергии на расстояние.

Начальные попытки построить передающие линии столкнулись с тем, что при соединении генератора с приемниками электроэнергии длинным кабелем мощность к концу передающей линии сильно снижалась из-за огромных потерь на нагрев. Необходимо было использовать кабели с большей площадью сечения, что делало их значительно более дорогими, или повышать напряжение, чтобы уменьшить силу тока.

После опытов с передачей постоянного и однофазного переменного тока с помощью линий повышенного напряжения потери оставались слишком высокими – на уровне 75%. И только когда Доливо-Добровольский разработал систему трехфазного тока, был сделан прорыв в передаче электроэнергии: добились снижения потерь до 20%.

Важно! Сейчас подавляющее большинство линий электропередачи использует трехфазный переменный ток, хотя идет развитие и ЛЭП на постоянном токе.

Схема передачи электроэнергии

Магнит на счетчик электроэнергии

Читайте также  Не греет теплый пол электрический причины

В цепи от производства энергии до получения ее потребителями существует несколько звеньев:

  • генератор на электростанции, вырабатывающий электроэнергию напряжением 6,3-24 кВ (есть отдельные агрегаты с большим номинальным напряжением);
  • повышающие подстанции (ПС);
  • сверхдальние и магистральные ЛЭП напряжением 220-1150 кВ;
  • крупные узловые ПС, понижающие напряжение до 110 кВ;
  • ЛЭП 35-110 кВ для передачи электрической энергии на питающие центры;
  • дополнительные понижающие подстанции – питающие центры, где получают напряжение 6-10 кВ;
  • распределительные ЛЭП 6-10 кВ;
  • трансформаторные пункты (ТП), ЦРП, находящиеся рядом с потребителями, для понижения напряжения до 0,4 кВ;
  • низковольтные линии для подведения к домам и другим объектам.

Упрощенная схема передачи электроэнергии

Схемы распределения

ЛЭП бывают воздушными, кабельными и кабельно-воздушными. Для увеличения надежности электрическая мощность в большинстве случаев передается несколькими путями. То есть на шины подстанции подводятся две и более линий.

Существует две схемы распределения электроэнергии 6-10 кВ:

  1. Магистральная, когда линия 6-10 кВ является общей для питания нескольких ТП, которые могут быть расположены на всем ее протяжении. Если при этом магистральная ЛЭП получает питание от двух разных фидеров с обеих сторон, такая схема называется кольцевой. При этом в нормальном режиме работы она питается от одного фидера и отключена от другого коммутационными аппаратами (выключателями, разъединителями);

Магистральная схема с двухсторонним питанием

  1. Радиальная. В этой схеме вся мощность сосредоточена в конце ЛЭП, которая предназначена для электроснабжения единственного потребителя.

Для линий напряжением 35 кВ и выше используют схемы:

  1. Радиальная. Мощность на ПС приходит по одноцепной или двухцепной питающей линии от одной узловой подстанции. Самая экономически выгодная схема – с одной линией, но очень ненадежная. Благодаря двухцепным ЛЭП, создается резервное питание;
  2. Кольцевая. Шины ПС запитываются не менее, чем двумя ЛЭП от независимых источников. При этом на питающих линиях могут существовать ответвления (отпайки), отходящие на другие ПС. Общее число отпаечных ПС должно быть не больше трех для одной ЛЭП.

Важно! Кольцевую сеть питают не меньше двух узловых подстанций, размещенных, как правило, на значительном расстоянии друг от друга.

Трансформаторные подстанции

Как остановить счетчик электроэнергии

Трансформаторные подстанции наряду с ЛЭП – основная составная часть энергосистемы. Они делятся на:

  1. Повышающие. Находятся вблизи электростанций. Основное оборудование – силовые трансформаторы, повышающие напряжение;
  2. Понижающие. Расположены на других участках электросети, находящихся ближе к потребителям. Содержат понижающие трансформаторы.

Существуют еще преобразовательные ПС, но они не относятся к трансформаторным. Служат для преобразования переменного тока в постоянный, а также получения тока другой частоты.

Основное оборудование трансформаторных ПС:

  1. Распредустройство высокого и низкого напряжения. Оно может быть открытого типа (ОРУ), закрытого типа (ЗРУ) и комплектное (КРУ);
  2. Силовые трансформаторы;
  3. Щит управления, релейный зал, где сосредоточена аппаратура защит и автоматического управления коммутационными аппаратами, сигнализация, измерительные приборы и счетчики электроэнергии. Два последних вида оборудования, как и некоторые виды защит, могут присутствовать и в КРУ;

Щит управления подстанцией

  1. Аппаратура собственных нужд ПС, куда входят трансформаторы собственных нужд (ТСН), понижающие напряжение с 6-10 до 0,4 кВ, шины СН 0,4 кВ с коммутационными аппаратами, батарея аккумуляторов, устройства подзаряда. От СН питаются защиты, освещение ПС, отопление, двигатели обдува трансформаторов (охлаждение) и т. д. На тяговых железнодорожных ПС трансформаторы собственных нужд могут иметь первичное напряжение 27,5 или 35 кВ;
  2. В распредустройствах находятся коммутационные аппараты трансформаторов, питающих и отходящих линий и фидеров 6-10 кВ: разъединители, выключатели (вакуумные, элегазовые, масляные, воздушные). Для питания цепей защит и измерений применяются трансформаторы напряжения (ТН) и тока (ТТ);
  3. Оборудование для защиты от перенапряжений: разрядники, ОПН (ограничители перенапряжений);
  4. Токоограничивающие и дугогасительные реакторы, батареи конденсаторов и синхронные компенсаторы.

Последнее звено понижающих подстанций – трансформаторные пункты (ТП, КТП-комплектные, МТП-мачтовые). Это небольшие устройства, содержащие 1, 2, реже 3 трансформатора, понижающие напряжение иногда с 35, чаще с 6-10 кВ до 0,4 кВ. Со стороны низкого напряжения установлены автоматы. От них отходят линии, непосредственно распределяющие электрическую энергию реальным потребителям.

Комплектная трансформаторная подстанция

Пропускная способность линий электропередачи

Какой счетчик электроэнергии лучше поставить в квартире

При передаче электрической энергии основным показателем является пропускная способность ЛЭП. Она характеризуется значением активной мощности, передаваемой по линии в нормальных рабочих условиях.

Пропускная способность находится в зависимости от напряжения ЛЭП, ее протяженности, размеров сечения, вида линии (КЛ или ВЛ). При этом натуральная мощность, не зависящая от длины ЛЭП, – это активная мощность, которая передается по линии при полной компенсации реактивной составляющей.

Практически таких условий достичь невозможно.

Важно! Максимальная передаваемая мощность для ЛЭП напряжением от 110 кВ и ниже ограничивается только нагревом проводов. На линиях более высокого напряжения учитывается еще статическая устойчивость энергосистемы.

Некоторые значения пропускной способности ВЛ при КПД = 0,9:

  • 110 кВ: натуральная мощность – 30 мВт, максимальная – 50 мВт;
  • 220 кВ: натуральная мощность – 120-135 мВт, максимальная – 350 мВт по устойчивости и 280 мВт по нагреву;
  • 500 кВ: натуральная мощность – 900 мВт, максимальная – 1350 мВт по устойчивости и 1740 мВт по нагреву.

Потери электроэнергии

Не вся электроэнергия, выработанная на электростанции, доходит до потребителя. Потери электроэнергии могут быть:

  1. Технические. Вызываются потерями в проводах, трансформаторах и другом оборудовании на нагрев и из-за других физических процессов;
  2. Несовершенство системы учета на энергопредприятиях;
  3. Коммерческие. Происходят из-за отбора мощности, помимо приборов учета, разницы фактически потребленной мощности и учтенной счетчиком и т. д.

Технологии передачи электроэнергии не стоят на месте. Развивается использование сверхпроводящих кабелей, позволяющих свести потери практически к нулю. Беспроводная передача электроэнергии – уже не фантастика для подзарядки мобильных устройств. А в Южной Корее работают над созданием беспроводной системы передачи энергии для электрифицированного транспорта.

Источник: https://elquanta.ru/teoriya/peredacha-ehlektroehnergii-na-rasstoyanie.html

Как происходит передача и распределение электроэнергии?

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии. Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД. В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать?

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов. Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi. Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Читайте также  Как выбрать проточный водонагреватель электрический в квартиру

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный. Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно. Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Вот мы и рассмотрели схему передачи электричества от источника к дому. Надеемся, вам стало понятно, как передается электроэнергия на расстоянии к потребителям и почему для этого используют высокое напряжение.

Будет интересно прочитать:

Источник: https://samelectrik.ru/kak-proisxodit-peredacha-i-raspredelenie-elektroenergii.html

Передача электроэнергии

20 05 2016      greenman       Пока нет комментариев

Передача электрической энергии на большие расстояния возможна только при высоких напряжениях тока, достигающих 110, 220, 400 и даже 500—800 тыс. в. Генератор электрической станции способен создать напряжение не выше 20 тыс. в.

В то же время, для различных электрических машин, двигателей и устройств нужен электрический ток напряжением всего в несколько десятков или сотен вольт. Вот здесь переменный ток оказывается незаменимым.

Ведь позволяет с помощью трансформаторов изменять напряжение в любых пределах: повышать на электростанциях для передачи на большие расстояния и снова понижать непосредственно у потребителей.

В конце прошлого столетия русский электротехник М. О. Доливо-Добровольский получил трехфазный переменный ток, обладающий очень важными достоинствами.

Во-первых, трехфазные линии электропередач выгоднее однофазных: по ним при той же затрате проводов и изоляции можно передать больше энергии, по однофазным.

А во-вторых, благодаря и свойству трехфазного переменного тока создавать вращающееся магнитное поле удалось построить очень простые и надежные асинхронные электрические двигатели, которые сейчас широко используются для привода станков и машин.

Вот эти качества переменного тока позволили ему занять ведущее положение в технике и послужили причиной того, что в наши дни все промышленные электростанции вырабатывают только трехфазный переменный ток.

Больше половины вырабатываемой электрической энергии потребляют электрические двигатели. Кроме простых асинхронных двигателей, не имеющих обмотки на роторе, есть двигатели с обмоткой и контактными кольцами на роторе. Такие моторы развивают большую мощность при трогании с места, и поэтому их чаще всего применяют на подъемных кранах. Есть еще синхронные двигатели, имеющие постоянную скорость вращения.

Благодаря этому они применяются в машинах и механиз-мах, требующих постоянной скорости движения независимо от их нагрузки: в эскалаторах метрополитена, в больших водяных насосах, электрических часах и др. Электрические двигатели бывают маленькими, меньше катушки ниток, и огромными, как карусель, имеющими как очень малую, так и невероятно большую мощность.

Применение в качестве источника привода станков сразу нескольких электрических двигателей позволило устранить сложную систему передач, упростить механизмы станков, облегчило управление ими и дало возможность создать автоматические линии.

Малые размеры и простота электрических двигателей позволили использовать электрическую энергию там, где раньше применялся только ручной труд. Электрические дрели, пилы, рубанки, шуруповерты и другой инструмент намного облегчили труд рабочих, сделали его более производительным. Электрические комбайны, пылесосы, стиральные машины и холодильники пришли на помощь домашним хозяйкам. А еще раньше в домах появились электрические чайники, утюги, плитки.

Переменный ток — хороший источник тепла

В мощных дуговых электропечах плавят и варят металл. Электрические печи широко используются в установках «искусственного климата», для обогрева сушильных шкафов и помещений, нагрева металлов и т.д.

Электрические лампочки светят независимо оттого, какой ток идет через их нити: переменный пли постоянный. Но передача переменного тока более экономична, и трансформаторы позволяют легко получать и поддерживать необходимое напряжение. Поэтому осветительная сеть городов и сел питается переменным током.

Но вот мы сели в трамвай, троллейбус, в вагон метро, в пригородную электричку — и сразу попали во владения постоянного тока. Дело в том, что простые и удобные электрические двигатели переменного тока не позволяют плавно менять скорость своего вращения.

А изменять скорость движения приходится почти непрерывно; с такой работой может хорошо справиться только тяговый двигатель постоянного тока.

Питание таких двигателей осуществляется от специальных тяговых выпрямительных подстанций, на которых переменный ток преобразуется в постоянный, а затем подается в контактную сеть — в провода и рельсы.

Но ученые и инженеры задумались, нельзя ли на транспорте применить переменный ток. Оказалось, можно. И уже сейчас на многих железных дорогах в контактных проводах течет переменный ток напряжением до 25 тыс.в. Но двигатели электровозов по-прежнему работают на постоянном токе: выпрямительные установки, превращающие переменный ток в постоянный, в этом случае находятся также на электровозах.

При помощи электрических двигателей постоянного тока приводятся в движение колеса тепловозов, механизмы прокатных станов, шагающих экскаваторов и многих других машин.

Есть и еще большая и важная область, в которой переменный ток не может соперничать с постоянным. Речь идет об электролизе — процессе, связанном с прохождением тока через, жидкие растворы — электролиты.

Под действием постоянного тока электролит разлагается на отдельные элементы, которые осаждаются на опущенных в электролит электродах. Таким способом получают алюминий, магний, цинк, медь, марганец.

В химической промышленности при помощи электролиза добывают фтор, хлор, водород и другие вещества. С помощью электролиза наносят защитные покрытия на металлические изделия.

Постоянный ток успешно соперничает с переменным в сварочном деле. При сварке постоянным током частички металла переносятся с электрода на изделие более правильно, и шов получается лучше, чем при сварке переменным током.

Есть у постоянного тока еще одна особенность

Скорее не у самого тока, а у его источников. Чтобы получить переменный электрический ток, нужно непременно приводить в движение генератор, а источником постоянного тока могут служить неподвижные аккумуляторные батареи и галь-ванические элементы. Эти свойства источников электрического тока в ряде случаев заставляют отдавать предпочтение постоянному току.

Например, как завести двигатель стоящего на месте автомобиля? Достаточно нажать кнопку стартера, и двигатель постоянного тока, получая питание от аккумуляторной батареи, заведет мотор. А когда мотор работает, он вращает генератор, который вновь заряжает аккумуляторную батарею. Такой обратимый процесс недоступен, для переменного тока.

На многих шахтах работают электровозы большой мощности с аккумуляторными батареями, а в цехах заводов, на вокзалах и на складах часто можно встретить небольшие электрические тележки с аккумуляторами — электрокары.

Большие аккумуляторные батареи используются как источник питания устройств сигнализации, управления и аварийного освещения на электростанциях, в поездах и даже в троллейбусах. Легкие аккумуляторы и гальванические батареи применяются в переносных радиостанциях, в радиоприемниках, в электрических фонарях, измерительных и других приборах.

А вспомните об искусственных спутниках Земли и космических кораблях: на них установлены полупроводниковые солнечные батареи — они тоже дают постоянный электрический ток.

Прежде чем закончить, вернемся ненадолго к началу — к передаче электрической энергии по проводам. Передаваемые мощности и длина линий электропередач непрерывно возрастают, и приходится повышать напряжение до 500 и даже до 800 тыс. в.

И вот оказалось, что при этих условиях передавать электрическую энергию выгоднее на постоянном токе. Вдвое лучше используется изоляция, увеличивается пропускная способность воздушных линий электропередач, уменьшается количество проводов. Важно, что отпадет необходимость в сложном процессе синхронизации при включении линий, соединяющих большие электростанции или энергетические системы.

Этого, пожалуй, вполне достаточно, чтобы доказать целесообразность использования постоянного тока для сверхдальних передач энергии. Правда, для получения постоянного тока высокого напряжения и последующего преобразования его в переменный ток низкого напряжения нужны очень сложные и дорогие преобразовательные подстанции. Но, несмотря на это, расчеты показывают, что в ряде случаев для сверхмощных и сверхдальних электропередач все же выгоднее использовать постоянный ток.

Конечно, перечисленными здесь примерами далеко не исчерпываются все области применения электрической энергии. Здесь ничего не сказано об ее использовании для телеграфной и телефонной связи, для радио и телевидения и прочих целей, но об этом вы прочтете в других статьях этого тома. Ясно одно: нам нужен и переменный и постоянный ток и никогда один из них не вытеснит другого. Наоборот, разумное применение обоих позволяет лучше и полнее использовать электрическую энергию на благо человека.

Просто о сложном – Передача электроэнергии — Постоянный и переменный ток

  • Галерея изображений, картинки, фотографии.
  • Постоянный ток, переменный электрический ток – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Постоянный ток, переменный электрический ток.
  • Ссылки на материалы и источники – Передача электроэнергии — Постоянный и переменный ток.

Источник: http://greensource.ru/peredacha-jenergii/postojannyj-tok-peremennyj-tok.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий