Почему возникает молния

Содержание

Что такое молния и отчего возникает?

Почему возникает молния

Древние люди далеко не всегда считали грозу и молнию, а также сопровождающий их раскат грома проявлением гнева богов. Например, для эллинов гром и молния являлись символами верховной власти, тогда как этруски считали их знамениями: если вспышка молнии была замечена с восточной стороны, это означало, что всё будет хорошо, а если сверкала на западе или северо-западе – наоборот.

Идею этрусков переняли римляне, которые были убеждены, что удар молнии с правой стороны является достаточным основанием, чтобы отложить все планы на сутки. Интересная трактовка небесных искр была у японцев. Две ваджры (молнии) считались символами Айдзен-мео, бога сострадания: одна искра находилась на голове божества, другую он держал в руках, подавляя нею все негативные желания человечества.

Небесные искры

Молния – это огромных размеров электрический разряд, который всегда сопровождается вспышкой и громовыми раскатами (в атмосфере чётко просматривается сияющий канал разряда, напоминающий дерево). При этом вспышка молнии почти никогда не бывает одна, за ней обычно следует две, три, нередко доходит и до нескольких десятков искр.

Эти разряды почти всегда образуются в кучево-дождевых облаках, иногда – в слоисто-дождевых тучах больших размеров: верхняя граница нередко достигает семи километров над поверхностью планеты, тогда как нижняя часть может почти касаться земли, пребывая не выше пятисот метров. Молнии могут образовываться как в одной туче, так и между находящимися рядом наэлектризованными облаками, а также между облаком и землей.

Секреты самых необычных природных явлений645844

Состоит грозовая туча из большого количества пара, сконденсированного в виде льдинок (на высоте, превышающей три километра это практически всегда ледяные кристаллы, поскольку температурные показатели здесь не поднимаются выше нуля). Перед тем как туча становится грозовой, внутри неё начинают активное движение ледяные кристаллы, при этом двигаться им помогают восходящие с нагретой поверхности потоки тёплого воздуха.

Воздушные массы увлекают за собой вверх более мелкие льдинки, которые во время движения постоянно наталкиваются на более крупные кристаллы. В результате кристаллики меньших размеров оказываются заряженными положительно, более крупные – отрицательно.

После того как маленькие ледяные кристаллики собираются наверху, а большие – снизу, верхняя часть облака оказывается положительно заряженной, нижняя – отрицательно. Таким образом, напряжённость электрического поля в туче достигает чрезвычайно высоких показателей: миллион вольт на один метр.

Когда эти противоположно заряженные области сталкиваются друг с другом, в местах соприкосновения ионы и электроны образовывают канал, по которому вниз устремляются все заряженные элементы и образуется электрический разряд – молния. В это время выделяется настолько мощная энергия, что её силы вполне хватило бы на то, чтобы на протяжении 90 дней питать лампочку мощностью в 100 Вт.

Канал раскаляется почти до 30 тыс. градусов Цельсия, что в пять раз превышает температурные показатели Солнца, образуя яркий свет (вспышка обычно длится лишь три четверти секунды). После образования канала грозовое облако начинает разряжаться: за первым разрядом следуют две, три, четыре и больше искр.

Удар молнии напоминает взрыв и вызывает образование ударной волны, чрезвычайно опасной для любого живого существа, оказавшегося возле канала. Ударная волна сильнейшего электрического разряда в нескольких метрах от себя вполне способна сломать деревья, травмировать или контузить даже без прямого поражения электричеством:

  • На расстоянии до 0,5 м до канала молния способна разрушить слабые конструкции и травмировать человека;
  • На расстоянии до 5 метров постройки остаются целыми, но может выбить окна и оглушить человека;
  • На больших расстояниях ударная волна негативных последствий не несёт и переходит в звуковую волну, известную как громовые раскаты.

Раскаты грома

Через несколько секунд после того как был зафиксирован удар молнии, из-за резкого повышения давления вдоль канала, атмосфера раскаляется до 30 тыс. градусов Цельсия. В результате этого возникают взрывообразные колебания воздуха и возникает гром. Гром и молния тесно взаимосвязаны друг с другом: длина разряда нередко составляет около восьми километров, поэтому звук с разных его участков доходит в разное время, образуя громовые раскаты.

Интересно, что измеряя время, которое прошло между громом и молнией, можно узнать, насколько далеко находится эпицентр грозы от наблюдателя.

Для этого нужно умножить время между молнией и громом на скорость звука, который составляет от 300 до 360 м/с (например, если промежуток времени составляет две секунды, эпицентр грозы находится немногим более чем в 600 метрах от наблюдателя, а если три – на расстоянии километра). Это поможет определить, удаляется или приближается гроза.

Удивительный огненный шар

Одним из наименее изученных, а потому наиболее таинственных явлений природы считается шаровая молния – передвигающийся по воздуху святящийся плазменный шар.  Загадочен он потому, что принцип формирования шаровой молнии неизвестен и поныне: несмотря на то, что существует большое число гипотез, объясняющих причины появления этого удивительного явления природы, на каждую из них нашлись возражения. Учёным так и не удалось опытным путём добиться образования шаровой молнии.

Шарообразная молния способна существовать длительное время и перемещаться по непрогнозируемой траектории. Например, она вполне способна зависать несколько секунд в воздухе, после чего метнуться в сторону.

В отличие от простого разряда, плазменный шар всегда бывает один: пока не было одновременно зафиксировано двух и больше огненных молний . Размеры шаровой молнии колеблются от 10 до 20 см. Для шаровой молнии характерны белый, оранжевый или голубой тона, хотя нередко встречаются и другие цвета, вплоть до чёрного.

Ученые еще не определили температурные показатели шаровой молнии: несмотря на то, что она по их подсчётам должна колебаться от ста до тысячи градусов Цельсия, люди, находившиеся недалеко от этого феномена, не ощущали исходившей от шаровой молнии теплоты.

Основная трудность при изучении этого феномена состоит в том, что зафиксировать его появление учёным удаётся редко, а показания очевидцев часто ставят под сомнение тот факт, что наблюдаемое ими явление действительно являлось шаровой молнией. Прежде всего, расходятся показания относительно того, в каких условиях она появилась: в основном её видели во время грозы.

Существуют также показания, что шаровая молния может появляться и в погожий день: спуститься с облаков, возникнуть в воздухе или появиться из-за какого-нибудь предмета (дерева или столба).

Ещё одной характерной особенностью шаровой молнии является её проникновение в закрытые комнаты, была замечена даже в кабинах пилотов (огненный шар может проникать через окна, спускаться по вентиляционным каналам и даже вылетать из розеток или телевизора).  Также были неоднократно задокументированы ситуации, когда плазменный шар закреплялся на одном месте и постоянно там появлялся.

Нередко появление шаровой молнии не вызывает неприятностей (она спокойно движется в воздушных потоках и через какое-то время улетает или исчезает). Но, были замечены и печальные последствия, когда она взрывалась, моментально испаряя находящуюся неподалёку жидкость, плавя стекло и металл.

Возможные опасности

Поскольку появление шаровой молнии всегда неожиданно, увидев возле себя этот уникальный феномен, главное, не впадать в панику, резко не двигаться и никуда не бежать: огненная молния очень восприимчива к колебаниям воздуха. Необходимо тихо уйти с траектории движения шара и постараться держаться от неё как можно дальше. Если человек находится в помещении, нужно потихоньку дойти до оконного проёма и открыть форточку: известно немало историй, когда опасный шар покидал квартиру.

В плазменный шар ничего нельзя бросать: он вполне способен взорваться, а это чревато не только ожогами или потерей сознания, но остановкой сердца. Если же случилось так, что электрический шар зацепил человека, нужно перенести его в проветриваемую комнату, теплее укутать, сделать массаж сердца, искусственное дыхание и сразу же вызвать врача.

Что такое северное сияние?64584.756

Что делать в грозу

Когда начинается гроза и вы видите приближение молнии, нужно найти укрытие и спрятаться от непогоды: удар молнии нередко смертелен, а если люди и выживают, то часто остаются инвалидами.

Если же никаких построек поблизости нет, а человек в это время в поле, он должен учитывать, что от грозы лучше спрятаться в пещере. А вот высоких деревьев желательно избегать: молния обычно метит в самое большое растение, а если деревья имеют одинаковую высоту, то попадает в то, что лучше проводит электричество.

Чтобы защитить отдельно стоящее строение или конструкцию от молнии, возле них обычно устанавливают высокую мачту, наверху которой закреплён заострённый металлический стержень, надёжно соединённый с толстым проводом, на другом конце находится закопанный глубоко в землю металлический предмет. Схема работы проста: стержень от грозовой тучи всегда заряжается противоположным облаку зарядом, который, стекая по проводу под землю, нейтрализует заряд тучи. Это устройство называется громоотвод и устанавливается на всех зданиях городов и других людских поселений.

Источник: https://awesomeworld.ru/prirodnye-yavleniya/molniya.html

Как образуется молния?

https://sciencing.com/can-something-happen-tv-there-thunder-storm-20447.html

Гроза – это атмосферное явление, которое сопровождается светомузыкальными эффектами под названиями молния и гром. Еще при грозе частенько бушует ветер и льется дождь. В общем-то каждый и сам все видел и все это знает.

С дождем и ветром более менее понятно, но возникает вопрос откуда берутся молния и гром? Обычно люди, которые знают, что электричество живет в розетке, делают серьезное лицо и выдают ответ: “Это облака сталкиваются, поэтому сверкает.

” Неплохой ответ конечно, но давайте ответим на этот вопрос с физической точки зрения.

Что такое молния?

Молния – это электрический разряд. Но откуда же он берется? А все начинается с облаков. С поверхности земли испаряется влага, которая поднимается вверх в виде капелек. “Стая” таких капелек собирается на определенной высоте и становится видна с земли в виде облака (в одном облаке просто невероятное количество капель).

К облакам постоянно присоединяются новые капли, а старые могут отрываться от них. Если их присоединяется больше, чем отрывается, то облако растет. Размер облака по вертикали может достигать нескольких километров (расстояние от земли до нижней части облака примерно 0.5 – 2 км).

Читайте также  Почему при выключенном свете горят светодиодные лампы

В облаках температура может быть ниже нуля градусов по Цельсию, поэтому капельки замерзают и становятся льдинками. Эти льдинки находятся в постоянном движении, поэтому очень часто сталкиваются друг с другом.

В результате этих столкновений одни капли/льдинки заряжаются положительно (они более легкие, поэтому поднимаются вверх), а другие отрицательно (они более тяжелые, поэтому скапливаются в нижней части облака).

При этом процессе нижняя часть облака заряжается отрицательно, а верхняя – положительно. При этом такое облако уже имеет большие размеры и становится грозовым. Нужно понимать, что не каждое облако становиться грозовым, так как этот процесс занимает длительное время, и нужно, чтобы сложились благоприятные условия (чтобы облако не распалось раньше, чем оно накопит достаточный заряд и наберет достаточную массу).

Теперь вернемся к молнии. Если два таких грозовых облака подходят на достаточно близкое расстояние (да еще одно подходит отрицательной стороной, а другое – положительной), заряженные частицы (электроны и ионы) начинают проскакивать через воздушную прослойку между двумя облаками (ведь плюс и минус, как мы знаем, должны притягиваться). Даже воздушная прослойка не может их остановить, настолько большие заряды у облаков!

Обычно первые частицы являются “полководцами”, так как они прокладывают канал между облаками, по которому сразу же устремляются миллиарды других заряженных частиц.

В этот момент мы и видим молнию!

Часто случается такое, что молния бьет прямо в землю. В этом случае сама земля выступает в качестве скопления положительного заряда, а остальное происходит как описано выше.

Почему молния имеет изломы?

Когда заряженные частицы летят через воздушную прослойку между облаками, они могут сталкиваться с молекулами воздуха или каплями (льдинками) воды. От этих столкновений меняется направление движения заряженных частиц, но в целом они продолжают двигаться в сторону второго облака, чтобы замкнуться на нем.

Почему мы слышим гром?

Гром– это звуковое сопровождение молнии, без которого невозможно достигнуть необходимого порога страха. Именно грома человек боится больше, чем светящейся полоски на небе. 

При прохождении электрического разряда (молнии) происходит резкое повышение температуры окружающего воздуха до нескольких тысяч или даже миллионов градусов. Этот температурный скачок приводит к локальному расширению нагретого воздуха (взрыв), которое вызывает ударную волну (раскат грома). Если молния имеет много изломов, то мы слышим несколько раскатов грома при каждой резкой смене направления возникает новый “взрыв“. 

Так как скорость звука в воздухе меньше скорости света, мы слышим гром немного позже самой вспышки. По времени задержки грома можно примерно посчитать расстояние до того места, где появилась молния. Для этого нужно посчитать: через сколько секунд слышится гром после вспышки. Каждая секунда равна расстоянию в 1 километр. То есть, если после вспышки прошло 10 секунд до того как прогремел гром, то молния сверкнула на расстоянии 10 км.

А Вы боитесь грозы??

Источник: https://boeffblog.ru/fizika/fizika-eto-interesno/kak-obrazuetsya-molniya

Как и почему возникает молния

Еще 250 лет назад знаменитый американский ученый и общественный деятель Бенджамин Франклин установил, что молния — это электрический разряд. Но до сих пор раскрыть до конца все тайны, которые хранит молния, не удается: изучать это природное явление сложно и опасно.

(20 фото молний + видео Молния в замедленной съёмке)

Внутри тучи

Грозовую тучу не спутаешь с обычным облаком. Ее мрачный, свинцовый цвет объясняется большой толщиной: нижний край такой тучи висит на расстоянии не более километра над землей, верхний же может достигать высоты 6-7 километров.

Что происходит внутри этой тучи? Водяной пар, из которого состоят облака, замерзает и существует в виде ледяных кристаллов. Восходящие потоки воздуха, идущие от нагретой земли, увлекают мелкие льдинки вверх, заставляя их все время сталкиваться с крупными, оседающими вниз.

Кстати, зимой земля нагревается меньше, и в это время года, практически, не образуется мощных восходящих потоков. Поэтому зимние грозы — крайне редкое явление.

В процессе столкновений льдинки электризуются, точно так же, как это происходит при трении различных предметов один о другой, — например, расчески о волосы. Причем, мелкие льдинки приобретают заряд положительный, а крупные — отрицательный. По этой причине верхняя часть молниеобразующего облака приобретает положительный заряд, а нижняя — отрицательный. Возникает разность потенциалов в сотни тысяч вольт на каждом метре расстояния — как между облаком и землей, так и между частями облака.

Развитие молнии

Развитие молнии начинается с того, что в некотором месте облака возникает очаг с повышенной концентрацией ионов — молекул воды и, составляющих воздух, газов, от которых отняли или к которым добавили электроны.

По одним гипотезам, такой очаг ионизации получается из-за разгона в электрическом поле свободных электронов, всегда имеющихся в воздухе в небольших количествах, и соударением их с нейтральными молекулами, которые сразу же ионизируются.

По другой гипотезе, начальный толчок вызывается космическими лучами, которые все время пронизывают нашу атмосферу, ионизируя молекулы воздуха.

Ионизированный газ служит неплохим проводником электричества, поэтому через ионизированные области начинает течь ток. Дальше — больше: проходящий ток нагревает область ионизации, вызывая всё новые высокоэнергетичные частицы, которые ионизируют близлежащие области, — канал молнии очень быстро распространяется.

Вслед за лидером

На практике процесс развития молнии происходит в несколько стадий. Сначала передний край проводящего канала, называемый «лидером», продвигается скачками по нескольку десятков метров, каждый раз, немного меняя направление (от этого молния получается извилистой). Причем скорость продвижения «лидера» может, в отдельные моменты, достигать 50 тысяч километров за одну-единственную секунду.

В конце концов, «лидер» достигает земли или другой части облака, но это еще не главная стадия дальнейшего развития молнии. После того, как ионизированный канал, толщина которого может достигать нескольких сантиметров, оказывается «пробит», по нему с огромной скоростью — до 100 тысяч километров всего за одну секунду — устремляются заряженные частицы, это и есть сама молния.

Ток в канале составляет сотни и тысячи ампер, а температура внутри канала, при этом, достигает 25 тысяч градусов — потому молния и дает столь яркую вспышку, видимую за десятки километров. А мгновенные перепады температур, в тысячи градусов, создают сильнейшие перепады давления воздуха, распространяющиеся в виде звуковой волны — грома. Этот этап длится очень недолго — тысячные доли секунды, но энергия, которая при этом выделяется, огромна.

Конечная стадия

На конечной стадии скорость и интенсивность движения зарядов в канале снижается, но, все равно, остаются достаточно большими. Именно этот момент наиболее опасен: конечная стадия может длиться только десятые (и даже меньше) доли секунды. Такое, достаточно длительное, воздействие на предметы на земле (например, на сухие деревья) часто приводит к пожарам и разрушениям.

Причем, как правило, одним разрядом дело не ограничивается — по проторенному пути могут двинуться новые «лидеры», вызывая в том же самом месте повторные разряды, по количеству доходящих до нескольких десятков.

Несмотря на то, что человечеству известна молния с момента появления самого человека на Земле, до настоящего времени она до конца еще не изучена.

: Молния в замедленной съёмке

Источник: http://PicsLife.ru/priroda/kak-i-pochemu-voznikaet-molniya.html

Физика атмосферы: как, почему и откуда появляются молнии

Каждую секунду в атмосфере Земли возникает примерно 700 молний, и каждый год около 3000 человек погибают из-за удара молнии.

Физическая природа молнии не объяснена окончательно, а большинство людей имеют лишь приблизительное представление о том, что это такое. Какие-то разряды сталкиваются в облаках, или что-то в этом роде. Сегодня мы обратились к нашим авторам по физике, чтобы узнать о природе молнии больше.

Как появляется молния, куда бьет молния, и почему гремит гром. Прочитав статью, Вы будете знать ответ на эти и многие другие вопросы.

Молния – искровой электрический разряд в атмосфере.

Электрический разряд – это процесс протекания тока в среде, связанный с существенным увеличением ее электропроводности относительно нормального состояния. Существуют разные виды электрических разрядов в газе: искровой, дуговой, тлеющий.

Искровой разряд происходит при атмосферном давлении и сопровождается характерным треском искры. Искровой разряд представляет собой совокупность исчезающих и сменяющих друг друга нитевидных искровых каналов. Искровые каналы также называют стримерами. Искровые каналы заполнены ионизированным газом, то есть плазмой. Молния – гигантская искра, а гром – очень громкий треск. Но не все так просто.

Искровой разряд

Физическая природа молнии

Как объясняют происхождение молнии?  Система туча-земля или туча-туча представляет собой своеобразный конденсатор. Воздух играет роль диэлектрика между облаками.  Нижняя часть облака имеет отрицательный заряд. При достаточной разности потенциалов между тучей и землей возникают условия, в которых происходит образование молнии в природе.

Ступенчатый лидер

Перед основной вспышкой молнии можно наблюдать небольшое пятно, движущееся от тучи к земле. Это так называемый ступенчатый лидер. Электроны под действием разности потенциалов, начинают двигаться к земле. Двигаясь, они сталкиваются с молекулами воздуха, ионизируя их.

От тучи к земле прокладывается как бы ионизированный канал. Из-за ионизации воздуха свободными электронами электропроводность в зоне траектории лидера существенно возрастает. Лидер как бы прокладывает путь для основного разряда, двигаясь от одного электрода (тучи) к другому (земле).

Ионизация происходит неравномерно, поэтому лидер может разветвляться.

Образование молнии

Обратная вспышка

В момент, когда лидер приближается к земле, напряженность на его конце растет. Из земли или из предметов, выступающих над поверхностью (деревья, крыши зданий) навстречу лидеру выбрасывается ответный стример (канал).

Это свойство молний используется для защиты от них путем установки громоотвода. Почему молния бьет в человека или в дерево? На самом деле ей все равно, куда бить. Ведь молния ищет наиболее короткий путь между землей и небом.

Именно поэтому во время грозы опасно находиться на равнине или на поверхности воды.

Когда лидер достигает земли, по проложенному каналу начинает течь ток. Именно в этот момент и наблюдается основная вспышка молнии, сопровождаемая резким ростом силы тока и выделением энергии. Здесь уместен вопрос, откуда идет молния? Интересно, что лидер распространяется от тучи к земле, а вот обратная яркая вспышка, которую мы и привыкли наблюдать, распространяется от земли к туче. Правильнее говорить, что молния идет не от неба к земле, а происходит между ними.

Почему молния гремит?

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Почему сначала мы видим молнию а потом слышим гром? Все дело в разности скоростей звука (340,29 м/с) и света (299 792 458 м/с). Посчитав секунды между громом и молнией и умножив их на скорость звука, можно узнать, на каком расстоянии от Вас ударила молния.

Образование молнии

Нужна работа по физике атмосферы? Для наших читателей сейчас действует скидка 10% на любой вид работы

Виды молний и факты о молниях

Молния между небом и землей – не самая распространенная молния. Чаще всего молнии возникают между облаками и не несут угрозы. Помимо наземных и внутриоблачных молний, существуют молнии, образующиеся в верхних слоях атмосферы. Какие есть разновидности молний в природе?

  • Наземные молнии;
  • Внутриоблачные молнии;
  • Шаровые молнии;
  • «Эльфы»;
  • Джеты;
  • Спрайты.
Читайте также  Почему не зажигается газовая колонка вектор

Последние три вида молний невозможно наблюдать без специальных приборов, так как они образуются на высоте от 40 километров и выше.

Наземные молнии

Приведем факты о молниях:

  • Протяженность самой длинной зафиксированной молнии на Земле составила 321 км. Эта молния была замечена в штате Оклахома, 2007 г.
  • Самая долгая молния длилась 7,74 секунды и была зафиксирована в Альпах.
  • Молнии образуются не только на Земле. Точно известно о молниях на Венере, Юпитере, Сатурне и Уране. Молнии Сатурна в миллионы раз мощнее земных.
  • Сила тока в молнии может достигать сотен тысяч Ампер, а напряжение – миллиарда Вольт.
  • Температура канала молнии может достигать 30000 градусов Цельсия – это в 6 раз больше температуры поверхности Солнца.

Молнии в атмосфере

Шаровая молния

Шаровая молния – отдельный вид молнии, природа которого остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По немногочисленным свидетельствам шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть.

Существует множество гипотез о происхождении шаровой молнии, но ни одна не может быть признана достоверной. Факт — никто не знает, как появляется шаровая молния. Часть гипотез сводят наблюдение этого явления к галлюцинациям. Шаровую молнию ни разу не удалось наблюдать в лабораторных условиях.

Все, чем могут довольствоваться ученые – это свидетельства очевидцев.

Напоследок предлагаем Вам посмотреть видео и напоминаем: если курсовая или контрольная свалилась на голову как молния в солнечный день, не нужно отчаиваться. Наши авторы выручают студентов с 2000 года. Обращайтесь за квалифицированной помощью в любое время. 24 часа в сутки, 7 дней в неделю мы готовы помочь Вам.

Источник: https://Zaochnik.ru/blog/fizika-atmosfery-kak-poyavlyayutsya-molnii/

Молния с точки зрения электричества

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по инициативе которого был проведен опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 г. им была опубликована работа, в которой был описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Схема возникновения грозы.

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до  20 км.

Как происходит формирование молнии? Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми. Иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Схема возникновения молнии: а — формирование; б — разряд.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор необъяснённые свойства, отличающие молнии от разрядов между электродами.

Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько кв.км.

Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках (внутриоблачные молнии), а могут ударять в землю (наземные молнии).

Наземные молнии

Схема развития наземной молнии: а, б — две ступени лидера; 1 — облако; 2 — стримеры; 3 — канал ступенчатого лидера; 4 — корона канала; 5 — импульсная корона на головке канала; в — образование главного канала молнии (К).

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизируют их.

По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.

https://www.youtube.com/watch?v=aEd8JMwsdno

Яркое свечение охватывает при этом все пройденные ступени, затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду. По мере продвижения лидера к земле напряжённость поля на его конце усиливается, и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.

Внутриоблачные молнии

Схема процесса электризации грозового облака и развития грозового разряда на наземный объект.

Внутриоблачные молнии включают в себя обычно только лидерные стадии, их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода).

Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт, особенно если он сильно электрически заряжен.

Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год.

Люди и молния

Схема защиты дерева от ударов молнии.

Молнии — серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, т.к. электрический ток идет по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание.

Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших от молнии отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, у него могут начаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока» — места входа и выхода электричества.

Это древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, через 10-15 минут она, как правило, уже неэффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

Основные пути проникновения перенапряжений в здания и сооружения объектов охраны.

В мифологии и литературе:

  • Асклепий (Эскулап), сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок, Зевс поразил его своей молнией;
  • Фаэтон, сын бога солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями.

Исторические личности:

  • российский академик Г. В. Рихман — в 1753 году погиб от удара молнии;
  • народный депутат Украины, экс-губернатор Ровенской области В. Червоний 4 Июля 2009 года погиб от удара молнии.

Интересные факты

  • Рой Салли Ван остался живым после семи ударов молнией;
  • американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище;
  • у индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации.

Деревья и молния

Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

Читайте также  Почему возникает обратная тяга в дымоходе

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии.

В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Поделитесь полезной статьей:

Источник: https://fazaa.ru/dlya-nachinayushhix/interesnoe-o-molnii.html

Молния: откуда берется, интересные факты

Многие люди боятся страшного явления природы – грозы. Это обычно происходит, когда солнце закрывается мрачными тучами, гремит жуткий гром и идет сильный дождь.

Конечно, бояться молнии следует, ведь она может даже убить или стать причиной возникновения пожара. Это известно давно, поэтому и придумали различные средства для защиты от молний и грома (например, металлические шесты).

Что же происходит там наверху и откуда берется гром? И молния как возникает?

Грозовые тучи

Тучи грозовые обычно огромные. По высоте они достигают нескольких километров. Визуально не видно, как внутри этих гремучих туч все бурлит и кипит. Это бурные потоки воздуха, включающие в себя капельки воды, с большой скоростью перемещаются снизу вверх и наоборот.

Самая верхняя часть этих туч по температуре достигает -40 градусов, и капли воды, попадающие в эту часть тучи, замерзают.

О происхождении грозовых туч

Прежде чем мы узнаем, откуда берется гром и молния как возникает, вкратце опишем, как формируются грозовые тучи.

Большая часть этих явлений происходит не над водной гладью планеты, а над континентами. Кроме того, грозовые облака интенсивно формируются над континентами тропических широт, где у поверхности земли воздух (в отличие от воздуха над водной поверхностью) сильно прогревается и поднимается быстро вверх.

Обычно на склонах разных возвышенностей образуется подобный восходящий поток прогретого воздуха, который втягивает в себя влажный воздух с обширных площадей земной поверхности и поднимает его вверх.

Таким образом и образуются так называемые кучевые облака, превращающиеся в грозовые облака, описанные чуть выше.

А теперь проясним, что же такое молния, откуда берется она?

Молния и гром

Из тех самых замерзших капель образуются кусочки льда, которые также перемещаются в облаках с огромной скоростью, сталкиваясь, разрушаясь и заряжаясь электричеством. Те льдинки, которые легче и меньше, остаются наверху, а те, что крупнее, – тают, спускаясь вниз, вновь превращаясь в капельки воды.

Таким образом, в грозовой туче возникают два электрических заряда. В верхней части отрицательный, в нижней – положительный. При встрече разных зарядов возникает мощный электрический разряд и происходит молния. Откуда берется она, стало понятно. А дальше что происходит? Вспышка молнии мгновенно разогревает и расширяет вокруг себя воздух. Последний нагревается так сильно, что происходит эффект взрыва. Это и есть гром, пугающий все живое на земле.

Выходит, что все это — проявления атмосферного электричества. Тогда возникает следующий вопрос о том, последнее откуда берётся, причем в таких больших количествах. И куда оно девается?

Ионосфера

Что такое молния, откуда берется она, выяснили. Теперь немного о процессах, сохраняющих заряд Земли.

Ученые выяснили, что заряд Земли в общем невелик и составляет всего лишь 500 000 кулонов (как у 2 автомобильных аккумуляторов). Тогда куда исчезает тот отрицательный заряд, которые переносится молниями ближе к поверхности Земли?

Обычно в ясную погоду Земля потихоньку разряжается (постоянно между ионосферой и поверхностью Земли проходит слабый ток через всю атмосферу). Хоть и воздух считается изолятором, в нем есть небольшая доля ионов, которая позволяет существовать току в объёме всей атмосферы. Благодаря этому, хоть и медленно, но отрицательный заряд переносится с земной поверхности на высоту. Поэтому и объем суммарного заряда Земли всегда сохраняется неизменным.

Откуда берется шаровая молния

На сегодня самым распространенным мнением является то, что молния шаровая представляет собой особый вид заряда в форме шара, причем существующий довольно продолжительное время и перемещающийся по непредсказуемой траектории.

Единой теории возникновения этого явления на сегодня нет. Существует много гипотез, но пока ни одна не получила признания в среде ученых.

Обычно, как свидетельствуют очевидцы, шаровая молния возникает в грозу или в шторм. Но имеются и случаи её возникновения и в солнечную погоду. Чаще она порождается обычной молнией, иногда возникает и спускается с облаков, а реже появляется неожиданно в воздухе или даже может выйти из какого-то предмета (столб, дерево).

Некоторые интересные факты

Откуда берется гроза и молния, мы выяснили. Теперь немного о любопытных фактах, касающихся вышеописанных природных явлений.

1. Ежегодно Земля испытывает приблизительно 25 миллионов вспышек молний.

2. Молния имеет среднюю длину приблизительно в 2,5 км. Есть и разряды, простирающиеся в атмосфере на 20 км.

3. Есть поверье, что молния не может дважды ударить в одно место. В действительности это не так. Результаты анализа (по географической карте) мест ударов молний за предшествующие несколько лет показывают, что молния и несколько раз может ударить в одно и то же место.

Вот и выяснили что такое молния, откуда берется она.

Грозы образуются как следствие сложнейших атмосферных явлений планетарного масштаба.

Каждую секунду на планете Земля происходит примерно 50 вспышек молниий.

Источник: http://fb.ru/article/269806/molniya-otkuda-beretsya-interesnyie-faktyi

Как возникает молния?

Молния

Мы часто думаем, что электричество — это нечто такое, что вырабатывается только на электростанциях, а уж никак не в волокнистых массах водяных облаков, которые настолько разрежены, что в них спокойно можно просунуть руку. Тем не менее, в облаках есть электричество, как есть  даже в человеческом теле.

Природа электричества

Все тела состоят из атомов — от облаков и деревьев до человеческого организма. У каждого атома есть ядро, несущее положительно заряженные протоны и нейтральные нейтроны. Исключением является простейший атом водорода, в ядре которого нет нейтрона, а есть только один протон.

Вокруг ядра обращаются отрицательно заряженные электроны. Положительные и отрицательные заряды взаимно притягиваются, поэтому электроны вращаются вокруг ядра атома, как пчелы около сладкого пирога. Притяжение между протонами и электронами обусловлено электромагнитными силами. Поэтому электричество присутствует везде, куда бы мы ни посмотрели. Как мы видим, оно содержится и в атомах.

Интересный факт: природа молнии лежит в электричестве, которое содержится в облаках.

В нормальных условиях положительные и отрицательные заряды каждого атома уравновешивают друг друга, поэтому тела, состоящие из атомов, обычно не несут никакого суммарного заряда — ни положительного, ни отрицательного.

В результате соприкосновение с другими предметами не вызывает электрического разряда. Но иногда равновесие электрических зарядов в телах может нарушиться. Возможно, вы это испытываете на себе, находясь дома в холодный зимний день. В доме очень сухо и жарко.

Вы, шаркая босыми ногами, ходите по паласу. Незаметно для вас часть электронов с ваших подошв перешла к атомам ковра.

Вот теперь вы несете электрический заряд, так как количество протонов и электронов в ваших атомах уже не сбалансировано. Попробуйте теперь взяться за металлическую ручку двери. Между вами и ею проскочит искра, и вы почувствуете электрический удар.

Произошло вот что — ваше тело, которому не хватает электронов для достижения электрического равновесия, стремится за счет сил электромагнитного притяжения восстановить равновесие. И оно восстанавливается. Между рукой и дверной ручкой возникает поток электронов, направленный к руке. Если бы в комнате было темно, то вы увидели бы искры.

Свет виден потому, что электроны при перескакивании испускают кванты света. Если в комнате тихо, вы услышите легкое потрескивание.

Электричество окружает нас повсюду и содержится во всех телах. Облака в этом смысле — не исключение. На фоне голубого неба они выглядят очень безобидными. Но так же, как вы в комнате, они могут нести электрический заряд. Если это так — берегитесь! Когда облако восстанавливает электрическое равновесие внутри себя — вспыхивает целый фейерверк.

Как появляется молния?

Вот что при этом происходит: в темном огромном грозовом облаке постоянно циркулируют мощные воздушные потоки, которые сталкивают между собой разнообразные частицы — крупинки океанической соли, пыль и так далее.

Точно так же, как ваши подошвы при трении о ковер освобождаются от электронов, и частицы в облаке при столкновении освобождаются от электронов, которые перескакивают на другие частицы. Так возникает перераспределение зарядов.

На одних частицах, которые потеряли свои электроны, имеется положительный заряд, на других, которые приняли на себя лишние электроны, теперь отрицательный заряд.

По причинам, которые не вполне ясны, более тяжелые частицы заряжаются отрицательно, а более легкие — положительно. Таким образом, более тяжелая нижняя часть облака заряжается отрицательно. Отрицательно заряженная нижняя часть облака отталкивает в сторону земли электроны, так как одноименные заряды отталкиваются.

Таким образом, под облаком формируется положительно заряженная часть земной поверхности. Затем точно по такому же принципу, по которому между вами и дверной ручкой проскакивает искра, между облаком и землей проскочит такая же искра, только очень большая и мощная это и есть молния. Электроны гигантским зигзагом летят к земле, находя там свои протоны.

Вместо едва слышного потрескивания раздается сильный удар грома.

Если просмотреть весь процесс в замедленном темпе, то вот что мы увидим. Из основания облака выступает тускло светящаяся полоса, называемая проводником. Проводник, он же «лидер», начинает быстрыми извилистыми движениями приближаться к земле. Сначала он проскакивает на 50 метров вправо, потом на 50 метров влево. Это тот самый зигзаг, который мы видим в небе.

Путь лидера к земле продолжается в течение долей секунды, сила тока в молнии достигает 200 ампер. В домашней проводке сила тока не превышает 6 ампер. Когда лидер находится на расстоянии около 20 метров от земли, от нее в направлении к лидеру выскакивает искра и соединяется с ним.

Ослепительный зигзаг несется кверху, к облаку, сила тока при этом достигает 10000 ампер.

Интересный факт: удар молнии содержит достаточно электричества, чтобы осветить все дома и предприятия в целом горде, но только на протяжении доли секунды.

По образовавшемуся коридору вниз тихо проскальзывает следующий лидер, навстречу которому вновь летит гигантская искра. Температура при ударе молнии достигает 28000 градусов Цельсия. Потоки электричества много раз пролетают по каналу вверх и вниз: именно этот процесс мы воспринимаем как один удар молнии.

Как велика энергия одной молнии?

Примерно 20 тысяч мегаватт, этой энергии достаточно, чтобы осветить все дома и предприятия целой республики, правда только на долю секунды.

Источник: https://www.voprosy-kak-i-pochemu.ru/kak-i-pochemu-voznikaet-molniya/

Понравилась статья? Поделить с друзьями: