Линейный двигатель принцип работы

Линейные шаговые двигатели

Линейный двигатель принцип работы

При подключении силовой установки к сети переменного тока, появляется магнитное поле, поле чего ось обмотки статора начинает вращаться.

Как только в это магнитное поле при превращении начнут пересекать проводники обмотки ротора, появляется электродвижущая сила, которая со своей стороны заставляет ток течь по обмотке провода. При взаимодействии тока с магнитным полем появятся дополнительная сила, действующая на перемещение магнитного поля.

Именно из-за воздействия этой силы начинает двигаться вторичный элемент системы, ротор. Передвижение вторичного элемента асинхронного линейного двигателя происходит со скольжением.

Материалом вторичного элемента может быть медь, сталь или алюминий. Если в конструкции используется немагнитный материал вторичного элемента, то в схеме системы должно быть предусмотрено замыкание магнитного потока через ферромагнитные элементы.

В качестве альтернативы обмотки вторичного элемента силовой установки может быть использован металлический лист. Расположить этот элемент можно либо в шине между старом и ферромагнитным сердечником, либо — между двумя первичными элементами.

Трубчатый линейный двигатель

Трубчатый или коаксиальный линейный двигатель — один из подтипов линейных асинхронных ШД. В качестве статора системы используется труба, во внутренней части которой взаимодействуют обмотки статора и металлические шайбы. Взаимодействующие элементы являются частью магнитопровода. Группы катушек образуют обмотки отдельных фаз силовой установки. Вторичный элемент системы имеет аналогичную форму трубы и располагается внутри статора. Вторичный элемент состоит из ферромагнитного материала.

Во вторичном элементе образуются электрический ток по его же окружности, при воздействии которых совместно с магнитным полем появляется сила на вторичном элементе, которая вызывает движение ротора вдоль трубы. Магнитный ток во вторичном элементе трубчатого линейного двигателя, в отличие от классического линейного двигателя, где движение имеет радиальное направление, перемещается аксиально.

Синхронный ЛД

Основным преимуществом синхронного ЛД является наличие зазора между старом и ротором, высоким КПД и низким коэффициентом мощности. КПД синхронного линейного двигателя достигает значения в 96%. Однако значение мощности такого типа двигателя является крайне низким, а его значение при расчетах всегда приближено к единице.

Наиболее эффективно использовать синхронные ЛД можно в высокоскоростных транспортных средствах. Благодаря им можно значительно повысить комфортные условия движения состава, а также улучшить его экономические характеристики.

1. Условия эксплуатации

Если ваша силовая установка будет использоваться на предприятии, где система будет изолирована от воздействия внешней среды, и будет поддерживаться постоянный температурный режим, то мы сможем предложить для решения ваших задач довольно обширный ряд силовых установок.

Если же установка будет эксплуатироваться при экстремальных условиях: на улице, под воздействием осадков и при перепаде температур, то будьте готовы к тому, что вариантов подходящих силовых установок будет не так много, а стоимость оборудования будет значительно отличаться от стандартного. В этом случае для ваших задач подойдут системы из специального каталога.

2. Нагрузка на систему

Перед тем как купить линейный шаговый двигатель обратите внимание на тот факт, что предельная нагрузка на силовую установку одновременно является и максимальной. Таким образом давать предельные нагрузки на такие силовые установки ни в коем случае не рекомендуется даже в экстренных ситуациях!

3. Электроснабжение

Если в вашем случае требуется использовать в качестве источника питания системы батарею, то вы можете без проблем использовать ее в качестве альтернативного источника питания. В этом случае дополнительно к системе в некоторых случаях требуется подключение двигателя постоянного тока.

Как правило, электропитание установки берется от сети. Если в систему подается переменный ток, то нет необходимости дополнительно интегрировать в нее силовую систему с переменным током, поскольку трансформация переменного тока в постоянный может быть выполнена внутри двигателя самостоятельно.

4. Скорость передвижения

Заранее проанализируйте, с какой скоростью должна перемещаться ваша силовая установка, поскольку ЛШД могут передвигаться в различном диапазоне скоростей. В зависимости от скорости движения системы мы подберем для вас подходящий тип двигателя.Скорость передвижения может быть как очень медленной, так и крайне высокой. При выборе подходящей скорости помните, что нужно учитывать не только скорость движения установки, но и нагрузку, которую эта систему будет регулярно испытывать.

5. Длина хода

Длина хода напрямую влияет на размер всей системы. Размер актуатора в вытянутом положении зависит от длины хода силовой установки. При подборе линейного шагового двигателя заранее продумайте общий размер силовой установки, поскольку уместить актуатор с большой длиной хода в компактное пространство практически невозможно.

6. Проверка рабочего цикла

Проверка рабочего цикла силовой системы должна производиться на самой первой стадии работы. Данное условие было создано из-за перегревов в условиях долгой работы. Как правило, практически все актуаторы при полной работы испытывают перегрев.

Области применения линейных шаговых двигателей

Как правило, линейные шаговые двигатели применяют в тех случаях, когда классические ротационные двигатели не могут справиться с поставленной задачей из-за отсутствия подходящих параметров или, попросту, ЛШД самостоятельно могут положительно повлиять на свойства конструкции. Основной областью применения ЛШД является область пассажирских перевозок.

Если вы ищите способ, как организовать автоматическое открытие/закрытие ворот, шлагбаумов и дверей гаража, то актуаторы в этом случае является незаменимой вещью. Кстати, это самый простой способ их применения в обычной жизни.

Электротранспорт не может обойтись без линейных шаговых электродвигателей в первую очередь из-за обеспечения транспортному средству подходящего характера движения. Электротранспорт может равномерно разгоняться и двигаться с постоянной скоростью именно благодаря применению ЛШД. Значение скорости и ускорения лимитированы динамическими характеристиками транспортного средства и рельсового полотна, а также комфортабельностью и безопасностью перевозки пассажиров или груза.

Читайте также  D триггер принцип работы

Для транспортировки промышленных материалов: угля, древесины и т.п. линейные шаговые двигатели используются в конвейерных поездах. Конструкция работы ШЛД следующая: индукторы электропривода размещаются параллельно рельсовому полотну, дополнительная часть конструкции силовой установки располагается непосредственно на поезде или подвижном вагоне. В городском электротранспорте, наоборот, основной элемент ЛШД —  индукторы — располагаются на подвижном составе, а вторичный — вдоль рельсового полотна.

Цилиндрический линейный двигатель часто применяется в приводах разъединителей тяговых подстанций. Он не только помогает упростить конструкцию системы, но и повышает ее общую надежность и быстродействие.

Производственные автоматизированные линии также используют актуаторы в различных конструкциях: это все подъемных механизмы и системы вентиляции, в том числе эскалаторы и роботы для упаковки продукции.

В строительстве невозможно обойтись без сваезабивных молотов, в основе работы которых ЛШД выполняет ударные движения. Основным преимуществом конструкции сваезабивных молотов является простота производства деталей, термостойкость и отсутствие сложных условий для внедрения в эксплуатацию.

На стреле располагается статор, который с помощью специальной лебедки может двигаться по вертикальной оси. Вторичный элемент двигателя встраивается в ударную систему конструкции.

Подъем ударного элемента выполняется посредствам направления бегущего поля вверх, а перед максимальной точкой вертикального положения силовая установка выключается, так что система падает вниз под действием силы тяжести и собственного веса.

Для увеличения энергии удара двигатель остается в рабочем состоянии, но переводится перед точкой вертикального максимума в реверсивный режим работы. Чем глубже уходит свая, чем ниже на лебедке опускается статор силовой установки.

В металлургической промышленности используются магнитогидродинамические наносы, позволяющие перекачивать, транспортировать смешивать и дозировать электропровододящие жидкости, жидкий металл, а на атомных ЭС — жидкометаллический теплоноситель. В конструкции гидродинамических насосов отсутствуют подвижные механические элементы, а канал для транспортировки жидкого металла может быть полностью загерметезирован.

Другой обширной областью применения является медицина. Актуаторы используются в медицинской мебели, которая используется в стоматологии, гинекологии и хирургии. Все подвижные элементы мебели работают за счет встроенных в них актуаторов. Например, это стоматологические кресла с подвижными элементами, массажные кресла, тренажеры для восстановления после травм, а также инвалидные кресла.

Купить линейный шаговый двигатель

В Торговом Доме «Степмотор» в Санкт-Петербурге вы можете не только купить линейный шаговый двигатель, линейный привод с шаговый двигателем и актуатор, но и обязательно получите квалифицированную консультацию наших менеджеров по всем техническим возможностям каждой силовой установки.

Мы с удовольствием подберем шаговые двигатели, подходящие именно для вашего заказа, а также предоставим скидку при оптовом заказе или повторном обращении в наш Торговый Дом. Мы рады ответить на ваши вопросы ежедневно по будним дням с 9 до 18 по бесплатной по России горячей линии: 8-800-5555-068

Источник: https://stepmotor.ru/elektrodvigateli/line

Магнитный двигатель своими руками: как сделать

Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго.

Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество.

Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото – Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.

Фото – Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца. Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли.

Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора.

Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото – Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото – Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико.

На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты.

Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Читайте также  Принцип работы парогенератора бытового

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание.

В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски.

Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.

Фото – Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.

Фото – Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор.

Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма.

Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.

Фото – Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту.

Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей.

После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.

Фото – Принцип работы магнита

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Достоинства:

  1. Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  2. Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  3. Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.

Недостатки:

  1. Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  2. Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  3. Даже после приобретения готового мотора, его бывает очень сложно подключить;
  4. Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.

Источник: https://www.asutpp.ru/magnitnyj-dvigatel.html

Принцип работы электродвигателя

> Теория > Принцип работы электродвигателя

Принцип работы электродвигателя основан на использовании эффекта электромагнитной индукции. Само устройство предназначено для создания механической энергии за счёт использования электрических полей. Тип и мощность получаемой энергии зависят от способа взаимодействия магнитных полей и собственно устройства электродвигателя. В зависимости от типа используемого напряжения двигатели классифицируют на постоянного и переменного тока.

Электродвигатели

Электродвигатель постоянного тока

Принцип действия этих двигателей основан на использования постоянных магнитных полей, создаваемых в корпусе устройства. Для их создания служит либо постоянный магнит, закреплённый на корпусе, либо электромагниты, расположенные по периметру ротора.

Основным отличием двигателей постоянного тока является наличие в их корпусе постоянно действующего магнита, закреплённого на корпусе машины. Мощность электродвигателя зависит от этого магнита, точнее от его поля. Магнитное поле в якоре создаётся при подключении к нему постоянного тока. Но для этого необходимо, чтобы полюса постоянного магнитного поля якоря менялись местами. Для этого используются специальные коллекторно-щёточные устройства.

Они устроены в виде кольца-коллектора, зафиксированного на валу движка и подключённого к обмотке якоря. Кольцо разделено на сектора, разделённые диэлектрическими вставками. Соединение сектора коллектора с цепью якоря создаётся через скользящие по нему графитные щетки. Для более плотного контакта щётки прижимаются к кольцу коллектора пружинами. Графит применяется ввиду своей скользящей способности, высокой теплопроводности и мягкости.

Его применение практически не вредит проводникам коллектора.

При большой мощности электромоторов постоянного тока использование постоянного магнита неэффективно из-за большого веса такого устройства и низкой мощности создаваемого постоянным магнитом поля.

Для создания магнитного поля статора в этом случае используется конструкция из ряда катушечных электромагнитов, подключённых к отрицательной или положительной линии питания.

Одноименные полюсы подключаются последовательно, их количество составляет от одного до четырёх, количество щёток соответствует количеству полюсов, но, в общем, конструкция якоря практически идентична вышеописанной.

Для упрощения запуска электрического двигателя используют два варианта возбуждения:

  • параллельное, при этом рядом с обмоткой якоря включается независимая регулируемая линия, используется для плавного регулирования оборотов вала;
  • последовательное возбуждение, что говорит о способе подключения дополнительной линии, в этом случае существует возможность резкого наращивания количества оборотов или его снижения.
Читайте также  Принцип работы байпаса в системе отопления

Нужно отметить, что этот тип моторов имеет регулируемую частоту оборотов, что достаточно часто используется в промышленности и транспорте.

Интересно. В станках используются двигатели с параллельным возбуждением, что позволяет использовать регулировку количества оборотов, в то же время для грузоподъёмного оборудования подходит последовательное возбуждение. Даже эта особенность двигателей поставлена на службу человечеству.

Двигатель постоянного тока

Электродвигатель переменного тока

Принцип работы асинхронного двигателя

Устройство и принцип действия электродвигателя переменного тока впервые описал и запатентовал физик Никола Тесла, патент Великобритании за номером 6481. Но этот мотор не получил широкого распространения из-за низких пусковых характеристик, не смог найти решение пуска. Нужно отметить, что Тесла являлся основным апологетом развития этого типа двигателей, в отличие от Эдисона, который как раз ратовал за использование сетей постоянного тока.

Именно Тесла открыл явление, которое получило название сдвиг фаз, и предложил использовать его в электродвигателе, кроме того он опытным путём определил его наиболее эффективное значение в 90°. Кроме того, знаменитый физик обосновал использование вращающего магнитного поля в многофазных системах.

Но в 1890 году инженер М.О. Доливо-Добровольский создаёт первый рабочий образец асинхронного электродвигателя с якорем «беличье колесо» и с обмоткой статора по периметру окружности. В конструкции этого изделия нашли применение, как работа Никола Теслы, так и труды других инженеров и изобретателей. Справедливости ради нужно отметить, что элементы по отдельности были изобретены раньше, М. Доливо-Добровольский только совместил их в работоспособное устройство.

Вращающее магнитное поле, энергию которого использует этот тип электромотора, возникает в тройной обмотке статора, при подключении его к источнику тока. Ротор такого двигателя представляет собой металлический цилиндр, не имеющий обмотки.

Магнитное поле статора за счёт объединения в короткозамкнутую систему с ротором возбуждает в нем токи.

Они вызывают создание собственного магнитного поля якоря, которое, соединившись с вихревым полем статора, вызывает вращение ротора и объединённого с ним вала двигателя вокруг своей оси.

Название асинхронный двигатель получил из-за того, что поля не синхронизированы, магнитное поле статора имеет одинаковую скорость с полем якоря, но по фазе отстаёт от него.

Для запуска асинхронного электромотора требуются довольно значительные значения пусковых токов, это заметно и в реальности – при запуске в сеть станка или другого потребителя с таким мотором свет ламп накаливания зачастую мигает из-за падения напряжения в сети. Для упрощения пуска используют фазный ротор, это устройство якоря обычно используется в высокопроизводительных электродвигателях.

Фазный ротор, в отличие от обычного, имеет на корпусе три обмотки, объединённые в «звезду». В отличие от статора, они не подключены к энергоисточнику, а соединены со стартовым устройством. Подключение устройства в сеть характеризуется падением сопротивления до нулевых значений. В результате двигатель запускается ровно и работает без перегрузки.

Работа такого мотора довольно сложно регулируется, в отличие от моторов постоянного тока.

Интересно. Использование электромоторов переменного тока продвигал знаменитый Никола Тесла, в то время как энергию постоянного тока – не менее знаменитый Эдисон. В результате этого между двумя известнейшими учёными возник конфликт, продлившийся до самой смерти.

Двигатель переменного тока

Линейные электродвигатели

Для ряда устройств требуется не вращательное движение вала движка, а его возвратно-поступательное движение. Для того чтобы удовлетворить требования промышленников, конструкторами были разработаны и линейные электродвигатели. Понятно, что можно использовать для перехода вращательного движения в поступательное различные редукторы и коробки передач, но это усложняет конструкцию, делает её более дорогой, а также снижает её эффективность.

Статор и ротор такого устройства представляют собой полосы металла, а не кольцо и цилиндр как в традиционных моторах.

Принцип действия электродвигателя заключается в возвратно-поступательном движении ротора, которое возможно из-за электромагнитного поля, создаваемого статором с незамкнутой системой магнитопроводов.

В самой конструкции при работе генерируется движущееся магнитное поле, которое воздействует на обмотку якоря с коллекторно-щеточным устройством. Возникающее поле смещает ротор только в линейном направлении, без придания ему вращения. Мощность электродвигателя линейного типа ограничена его устройством.

Недостатком этих двигателей являются: сложность их изготовления, достаточно высокая стоимость такого оборудования и низкая эффективность, хотя и выше чем использование вращения через редуктор.

Использование электромоторов переменного тока в однофазной сети

Принцип работы синхронного генератора

Получить вращающееся магнитное поле статора проще всего в трёхфазной сети, но, несмотря на то, можно использовать асинхронные движки и в однофазной, бытовой сети. Требуется лишь проведение некоторых расчетов и изменение конструкции двигателя.

Формула изменений такова:

  1. Размещение на статоре движка двух обмоток: стартовой и рабочей;
  2. Включение в цепь конденсатора позволит сдвинуть по фазе ток в стартовой обмотке 90°. Практически можно сделать так: объединить обмотки трехфазного асинхронного двигателя, две обмотки в одну и установить конденсатор на это соединение.

Этот двигатель будет работать в бытовой сети, но, в отличие от двигателей постоянного тока, этот движок не регулируется по количеству оборотов, кроме того слабо переносит критические нагрузки и имеет меньший КПД. Мощность электродвигателя тоже сравнительно низка и во многом зависит от сети. Трехфазная сеть больше подходит для эксплуатации таких моторов.

В настоящее время электродвигатели широко распространены по всему миру. В числе их достоинств:

  • высокое КПД, до 80%;
  • высокая мощность двигателя при компактных размерах;
  • неприхотливость в обслуживании;
  • надежность;
  • низкие требования к энергопитанию.

Но в тоже время существует ряд проблем, которые ограничивают их более широкое распространение. Так, например, их мобильность ограничивает источники питания – в настоящее время нет достаточно мощных источников питания, которые смогли бы обеспечить длительную функциональность такого устройства.

Единственным исключением из правил является атомный реактор. Гребные электродвигатели подводных лодок и кораблей имеют отличную автономность, но в то же время использование энергоносителей таких размеров невозможно в быту.

Ситуацию могли бы исправить графеновые аккумуляторы, но их перспективы пока туманны.

Электромобиль

Принцип работы генераторов тока в автомобилях

Источник: https://elquanta.ru/teoriya/princip-raboty-ehlektrodvigatelya.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий