Как устроен генератор постоянного тока

Содержание

Генератор постоянного тока

Как устроен генератор постоянного тока

> Генераторы > Генератор постоянного тока

Такая машина предназначена для генерации постоянного тока с применением перемещения проводника в магнитном поле. В данной статье рассмотрены физические принципы работы, конструкторские схемы, расчёт и сфера применения этого устройства.

Промышленный генератор постоянного тока

Генерация электроэнергии

На рисунке ниже изображён простейший опыт, который помогает понять принцип действия генератора.

Образование тока при движении проводника

Если переместить проводник в пространстве так, чтобы он пересекал линии магнитного поля, то в нём образуется электродвижущая сила (ЭДС). Это явление называют индукцией. При замыкании свободных концов в цепи будет течь ток, который можно использовать для питания лампы накаливания, или другой полезной нагрузки.

На рисунке изображена правая рука с отогнутым в сторону перемещения проводника большим пальцем. Этот простой способ используют для наглядного определения направления тока в цепи.

Для получения необходимого результата допустимо передвижение, как проводника, так и магнита.

По указанной выше схеме действующую машину создать не получится. Но следующий вариант вполне применим на практике.

Схема устройства и ЭДС на выходе

На рисунке изображена рамка, вращающаяся в магнитном поле (направление силовых линии обозначены стрелкой «В»). Съёмники энергии – это специальные щётки. Рамка присоединена к половинам колец (коллекторам), разъединённым электрически с помощью особых изолирующих вставок. На выходе этого устройства электродинамическая сила будет изменяться в соответствии с приведённым графиком. Её величину определяет расчёт на основе следующей формулы:

е=2В*n, где

В – это поток созданного магнитного поля в Вб;

n – количество полных оборотов рамки за одну секунду.

Из формулы понятно, что получить больше электроэнергии можно двумя способами. Для этого надо увеличить скорость вращения либо повысить силу магнитного поля.

Уменьшение пульсации

Генератор переменного тока

На графике, который изображён выше, указан уровень еср. Если бы удалось стабилизировать ЭДС генератора на соответствующем значении, был бы получен нужный результат. Как такая задача решается на практике, видно из следующего рисунка.

Сглаживание электромагнитных колебаний с помощью нескольких рамок

Выходные электрические параметры этой машины далеки от идеала. Но ясно, что последовательное увеличение количества рамок позволит получить достаточно равномерный верхний уровень. Позитивное влияние в этом случае будут оказывать переходные процессы и взаимодействие электромагнитных полей, ведь приведённые графики иллюстрируют только примерные данные. Но даже в таком варианте ЭДС генератора на выходе будет изменяться не на всю амплитуду, а лишь на величину от Еmin до Еmax.

Увеличение количества рамок (витков обмоток генератора) и коллекторов поможет сгладить колебания на выходе.

Опытным путём можно подтвердить, что применение 20-22-х коллекторные конструкции позволят снизить пульсации ЭДС до 1-0,9%. Такие изменения на выходе генератора вполне приемлемы для решения многих практических задач.

Особенности работы генератора

Выше было отмечено улучшение качества электрических параметров при увеличении числа витков в обмотках. Но такое решение позволит получить ещё один положительный эффект. С его помощью увеличивают индуцируемую ЭДС на выходе в расчёте на один оборот ротора. Такой приём используют для того, чтобы генератор постоянного тока выполнял свои функции с высоким коэффициентом полезного действия.

С целью дальнейшего улучшения работы машины, конструкторы изучили возможности постоянных магнитов. Они способны выполнять свои полезные функции в автономном режиме без подключения к внешнему источнику энергии. Однако более сильное поле с помощью таких решений создать невозможно. Необходимый результат могут обеспечить только электромагниты.

Точный расчёт в этом случае будет сделать проще.

Выше были рассмотрены «идеальные» ситуации. Но при реализации конкретных проектов возникали разные затруднения. Например, необходимо было найти материал, который обеспечит хорошую электрическую проводимость, но одновременно не будет провоцировать ускоренный износ поверхности коллектора. Решение известно – это графитовые стержни, которые прижимаются с помощью пружин. Такие изделия сами постепенно истираются. Поэтому необходим определённый запас щёток для своевременной замены.

Для описания другой проблемы нужно пояснить некоторые процессы при вращении ротора в магнитном поле. Необходимо привести определения следующих базовых понятий:

  • геометрической нейтралью называют линию, которая проведена на равном расстоянии от северного и южного полюса;
  • физической называют такую линию, которая условно разделяет области воздействия полей, создаваемые электрической машиной.

В статическом положении эти линии совпадают. Но при начале вращения геометрическая – остаётся на своём месте, а физическая – отклоняется на определённый угол. Определённое влияние на этот процесс оказывает индуцированный ток, который индуцирует якорь. Суммарное воздействие всех полей ещё больше увеличивает угол смещения нейтрали (в сторону вращения ротора).

Чтобы максимально усилить эффективность генерации, графитовые стержни должны соприкасаться в месте выхода условной физической линии из коллектора.

Для этого точку прижима щёток смещают относительно геометрической центральной оси. При отклонении возникают электрические потери, образуются искры, которые попадают на коллекторные пластины. В такой ситуации появляющаяся окалина ухудшает проводимость, что ещё более снижает КПД установки.

Понятно, что в реальных условиях, когда нагрузка на выходе генератора изменяется, пришлось бы постоянно выполнять коррекцию положения щёток. Никакой расчёт в этом случае не поможет, ведь механическое перемещение щёток было бы слишком сложным.

Чтобы исключить подобные вредные влияния устанавливают дополнительные полюсы. С их помощью создают магнитное поле. Оно компенсирует искажения, которые вносит якорь. Эти же части конструкции выполняют ещё одну важную функцию.

При правильной настройке они нейтрализуют броски, при изменении направления тока в каждый момент, когда якорь переходит через нейтраль.

Схемы электрических машин

Генераторы постоянного тока создают, со следующими схемами, обмоток возбуждения:

  • независимой;
  • последовательной;
  • параллельной;
  • смешанной.

Принцип работы генераторов тока в автомобилях

Каждый из способов работы генератора имеет свои преимущества, особенности и недостатки. Принцип независимого возбуждения понятен из названия. В этом случае напряжение питания подаётся от внешнего источника. Это может быть аккумуляторная батарея либо отдельный генератор, выполняющий вспомогательные функции.

Ток в такой обмотке достигает сравнительно небольших величин. Как правило, он не превышает 5-6% от генерируемого тока.

Чтобы изменять создаваемое обмоткой магнитное поле в цепь питания вставляют регулируемое сопротивление.

В некоторых типовых схемах используют изменение напряжения Uв.

Независимое возбуждение обмотки электрического генератора постоянного тока

Чтобы понять, как работает машина, и определить оптимальный алгоритм настройки, надо измерить электрические параметры в режиме холостого хода. Он отличается отсутствием нагрузки в выходной цепи. Поэтому соответствующие влияния можно не принимать в расчёт. В таком состоянии напряжение, создаваемое генератором, будет равно ЭДС. На следующем рисунке в части а) приведён примерный график.

Графики электрических параметров генератора постоянно тока с независимым возбуждением обмотки

В этом эксперименте якорь вращается с неизменной скоростью (n1), поэтому только ток в обмотке возбуждения определял величину магнитного поля и, соответственно, ЭДС на выходе. Восходящий участок графика (1) показывает изменение напряжения на выходе при увеличении тока в обмотке. Нисходящий (2) – обратное действие при уменьшении тока. На нижнем графике приведены значения, которые были получены при снижении скорости вращения.

В части б) размещён график, иллюстрирующий изменение напряжения при разных нагрузках. Здесь постоянными были скорость вращения ротора и ток в обмотке возбуждения. Падение U0 объясняется снижением ЭДС, которое происходит из-за паразитного действия магнитного потока, создаваемый якорем, а также падением напряжения в его цепи.

Третий график (в) поясняет принципы регулировки генератора. Видно, что коррекции тока в обмотке возбуждения позволяют поддерживать напряжение на одном уровне при изменениях в цепи нагрузки.

На основании полученных результатов измерений и общего анализа можно сделать следующие выводы:

  • Внешнее возбуждение пригодно для регулировок напряжения генератора в широком диапазоне простыми методами. Для изменения напряжения в обмотке подойдёт элементарный расчёт.
  • Такая конструкция характеризуется относительно небольшим трансформированием производительности при изменении параметров нагрузки.
  • Необходим внешний источник питания. Это усложняет устройство и несколько снижает общую надёжность.

На следующих рисунках приведены принципиальные схемы генераторов с последовательной, параллельной и смешанной схемой обмотки возбуждения.

Принципиальные схемы генераторов обмотки возбуждения: а) последовательного, б) параллельного, в) смешанного типа

Особенности схем

Вид схемыОсобенностиПрименение
Последовательная Очень малое напряжение в режиме холостого хода, сильная зависимость от параметров нагрузки. Для генерации энергии такая схема не подходит. Её используют для создания машин, в которых торможение выполняется с применением реостатных методик.
Параллельная Подключение нагрузки осуществляется только после достижения номинального значения выходного напряжения. Эта схема подходит для создания генераторов, которые вырабатывают электроэнергию для заряда аккумуляторных батарей.
Смешанная Низкое влияние изменения параметров нагрузки на выходное напряжение. Требуется точный расчёт компонентов схемы, чтобы получить хороший результат. Такие решения применяют в сварочных аппаратах, где для работы устройство использует режим короткого замыкания.

Устройство генератора и расчёт

Устройства этого типа вытесняются аналогичными установками переменного тока, которые менее критичны к нагрузкам, обладают хорошими эксплуатационными характеристиками. Расчёт промышленного генератора выполняется специализированным конструкторским бюро.

На следующем рисунке приведена конструкция типичного генератора.

Конструкция генератора постоянного тока в разрезе

Использованы следующие обозначения:

  • 1, 2 – сердечник и катушка основного полюса;
  • 3 – наконечник;
  • 4, 5 – сердечник и катушка добавочного полюса;
  • 6 – станина;
  • 7 – ярмо;
  • 8 – подшипник;
  • 9, 11 – сердечник и обмотка якоря;
  • 10 – вентилятор;
  • 12 – коллектор;
  • 13 – щёточный палец.

. Модель генератора постоянного тока

Самостоятельный расчёт и создание генератора постоянного тока своими руками вряд ли целесообразны. При необходимости не будет трудно найти и приобрести устройство с нужными параметрами. Конструкция его слишком сложна для качественного воспроизведения в домашних условиях.

Источник: https://elquanta.ru/generatory/generator-postoyannogo-toka.html

Генератор постоянного тока: принцип действия, устройство

Для преобразования различных типов энергии в электрическую, используются специальные устройства. Одним из наиболее простых механизмов является генератор постоянного тока, который можно купить в любом магазине электротоваров или собрать своими руками.

Читайте также  Расчет генератора для ветряка

Характеристики

Генератор постоянного тока – это устройство, которое преобразует механическую энергию в электрическую для дальнейшего использования во внешнем контуре. Источником механической энергии в таком случае может служить любое механическое усилие: вращение специальной ручки, подключение двигателя к прибору. Нужно отметить, что подавляющая часть квартир и домов в черте любого города снабжается при помощи именно таких генераторов, только промышленного типа.

Фото – генератор постоянного тока

Электрический генератор тока может действовать полностью противоположно. Обратное преобразование электрической энергии в механическую осуществляется посредством электродвигателя. Многие моторы оснащаются ручным (механическим) приводом, которые при правильном подключении могут преобразовать энергию и сети в обратном направлении.

Принцип работы и устройство

Генератор постоянного тока состоит из двух основных частей – это статор и ротор. Прочие детали:

  1. Корпус: внешняя рама генератора. Зачастую изготовлен из чугуна или стали. Корпус обеспечивает механическую прочность для всей конструкции генератора (или электродвигателя). Он также передает магнитный поток, создаваемый полюсами;
  2. Магнитные полюсы. Соединяются с корпусом при помощи винтов или болтов, на них размещается обмотка;
  3. Статор, остов или ярмо изготавливается из ферромагнитных сплавов, на эту деталь устанавливается катушка возбуждения. Сердечники оснащены полюсами, которые помогают определить направление потока заряженных частиц. Именно магнитные наконечники образовывают магнитное поле, необходимое для работы устройства;
  4. Ротор: якорь генератора. Сердечник собирается из отдельных стальных пластин, это помогает увеличить КПД генератора и уменьшить образование вихревых токов. При установке пластин образуются впадины, в которые наматывается обмотка якоря или обмотка самовозбуждения;
  5. Коммутатор и щетки. Щетки изготавливаются из графита, при этом их в генераторе как минимум две. Узнать число щеток можно при помощи подсчета полюсов – этот показатель идентичен.

Фото – конструкция якоря постоянного генератора

Для соединения выводов контура используются коллекторные пластины, их производятся из меди, которая известна, как отличный проводник электрических сигналов.

Принцип действия генератора постоянного тока базируется на формуле:

e = B*l*v

Согласно ему, когда проводник движется в магнитном поле (что позволяет сократить магнитные силовые линии), ЭДС индукции динамически производится в проводнике. Величина генерируемого ЭДС может быть задана при помощи уравнения генератора постоянного тока .

Одной из основных функций устройства для преобразования переменного тока является генерирование ЭДС в постоянный ток. Направление генерируемого ЭДС будет меняться через каждый проводник, через который энергия проходит при вращении ротора. При помощи коммутатора, на выходе генератора образуется постоянный поток заряженных частиц. Выходной сигнал при этом имеет вот такой вид:

Фото – выходной сигнал генератора постоянного тока

Типы

Существуют такие типы генераторов постоянного тока: с самовозбуждением и работающие по принципу независимого включения (схема ниже). Способы возбуждения зависят от типа питания устройства. Самовозбуждающийся электрогенератор работает от наружных источников, это может быть аккумуляторная батарея или ветрогенератор. Также внешняя система возбуждения часто реализовывается на магнитах (в основном на устройствах с низкой мощностью, до нескольких десятков ватт).

Фото – схема генератора с независимым включением

Возбуждение независимого генератора производится за счет питания от обмотки прибора. Эти устройства также делятся на виды:

  1. Шунтовые или параллельного возбуждения;
  2. Последовательные.

Первые отличаются параллельным включением обмотки якоря с обмоткой возбуждения, вторые, соответственно, последовательным подключением этих деталей.

Якорная реакция

Это довольно частое явление в режиме холостого хода генератора. Оно характеризуется наложением результирующих магнитных полей статором и ротором, что снижает напряжение и уменьшает магнитное поле. Вследствие, падает электродвижущая сила устройства, наблюдаются перебои в работе, синхронный генератор даже может перегреться или загореться из-за искр, которые появляются от неправильного трения щеток.

Фото – полюсы генератора

При этой неисправности можно сделать следующее:

  1. Компенсировать магнитное поле при помощи дополнительных полюсов. Это поможет справиться с падением этой характеристики в отдельных точках схемы;
  2. Часто ремонт осуществляется простым сдвигом коллекторных щеток.

Назначение

В отличие от генераторов переменного тока, устройства с постоянным типом электроэнергии нуждаются в источнике бесперебойного питания, постоянно направляющего ток DC в обмотку якоря. Из-за этого область применения таких приборов довольно узкоспециализированная, в данный момент они мало где используются.

Фото – принцип работы генератора

Часто их используют для питания электрического транспорта в городах. Также генераторы постоянного тока применяют для работы электрического автомобиля, мотоцикла или как судовые возбудители или сварочные инверторы. Они применяются как тихоходные двигатели для ветряков.

Генератор дизельный постоянного тока может использоваться как электродвигатель для мощных промышленных машин (тяговый трактор, комбайн и прочие) и тахогенератор. При этом для управления трактора требуется мощный агрегат, у которого технические характеристики не уступают показателям 300 – 400 кВт. При этом дизель может заменить также газ.

Фото – устройство автомобильного генератора

Генератор постоянного тока имеет следующие характеристики (расчет производится при n=const):

  1. Холостой ход Е=f(iв)
  2. Формула для последовательного возбуждения U=f(I)
  3. Параллельное возбуждение U=f(I)

Исследование показывает, что характеристики можно рассчитать и исходя из n=0.

Стандартные показатели Вы можете найти в паспорте прибора, причем они часто отклоняются на несколько процентов (возможная погрешность также указывается в инструкции к генератору). Самодельные генераторы могут иметь отличные характеристики от представленных, подобрать необходимые данные можно при помощи справочников. Проверить их можно методом измерения имеющихся параметров, есть разные способы, зависящие от типа генератора.

Достоинства генератора постоянного тока:

  1. В отличие от прибора переменного типа, не теряет энергию на гистерезисе, а также на вихревых токах;
  2. Может работать в экстремальных условиях;
  3. Имеет относительно легкий вес и небольшую конструкцию;

У такого устройства есть и недостатки. Главным является необходимость во внешнем источнике питания. Но иногда данная особенность используется как регулятор электрической машины.

Купить генераторы постоянного тока можно в интернет-магазинах, на импортных сайтах, а также на заводах и рынках. Продажа также производится с рук, но не рекомендуем использовать бывшие в употреблении электрические приборы. Стоимость зависит от назначения и мощности прибора. Цена на 4ГПЭМ варьируется в пределах 30 000 рублей, а ПМ-45 – 60 000. При покупке должна быть произведена презентация работы.

Источник: https://www.asutpp.ru/generator-postoyannogo-toka.html

В чем секрет работы генератора постоянного тока: устройство и его принцип действия?

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора.

Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

Как любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.

В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

Генераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков).

Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.

Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Читайте также  Генератор переменного тока 220в своими руками

Устройство и принцип работы генератора постоянного тока на видео

Источник: http://elektrik24.net/elektrooborudovanie/generator/postoyannogo-toka.html

Устройство и принцип работы генератора переменного тока

Мироздание предоставило человечеству триллион способов получить электричество, каждый этап развития характеризуется собственными технологиями. Допустим, исторически первым считают генератор постоянного заряда Ван де Граафа. Неверная точка зрения. Люди пользовались прежде другими разновидностями. Сегодня рассмотрим устройство, принцип работы генератора переменного тока. Приступим.

Работа генераторов электрического тока

Принцип призван создать потенциал относительно Земли, считаемую нулем. Неправильно, но все в мире относительно. Хотя земная поверхность несет заряд, играет роль разница потенциалов меж клеммами генератора и почвой. Стоящий на грунте предмет обволакивается полем планеты, считаем постулат верным. Первым изобретен генератор постоянного тока. Скорее напряжения. Вольтаж получался фантастический, тока приборчик давал мало. Принцип действия прост:

Принцип действия генератора

  1. Лента трется, локально формируется заряд.
  2. Путем конвейерного механизма участок достигает токоснимателя.
  3. Проводимостью клеммы вида шара плотность уравнивается.

В результате сфера приобретает заряд, плотностью равный локальному ленты. Понятно, такие генераторы не слишком удобны, в 1831 году Майкл Фарадей создает нечто новое. Пользуясь намагниченной лошадиной подковой, вращающимся медным диском получил электричество по-иному: явлением магнитной индукции. Ток выходил переменный. Следовательно, поле перестало быть статическим, став электромагнитным. Поясним:

  • В природе часто встречаются заряды электричества положительного или отрицательного знака, никто не сумел разыскать отдельно полюсы магнита.
  • Переменное электрическое поле вызывает соответствующий отклик эфира. Выражен продуцированием переменной магнитной составляющей в плоскости перпендикулярной исходной.

Процесс продолжается беспрерывно, называется электромагнитной волной. Осваивает свободное пространство прямолинейно, пока энергия затухает. Что касается проводов, электричество распространяется сравнительно просто. Но! Пока кабель снабжен оплеткой.

Экран пропал, зануление (заземление) отсутствует — волна начинает излучаться. Эффект эксплуатируют беспроводные отвертки-индикаторы, помогают установить (локализовать) источники помех промышленной частоты 50 Гц.

И если системный блок компьютера не заземлен, при помощи вещички можно легко исправить недочет.

Помогает проверить вредоносное излучение дисплеев. Частота 50 Гц легко излучается проводами. Аспект увеличивает расходы электростанций (потери), вредит здоровью граждан. Как возникает энергия в генераторе Фарадея? Объясняли школьные учителя: при вращении рамки в поле магнита индукция через площадь меняется, наводится электрический ток.

Механическая энергия движения преобразуется в электрическую. Догадались, человечество эксплуатирует:

  1. Падение с плотины вниз масс воды.
  2. Энергию пара тепловых, атомных электростанций.

Два главнейших механизма получения энергии. Электричество становится движение лопасти турбины генератора. Природа родила устройства, сжигающие дизельное топливо, керосин, принцип действия мало отличается. Разница ограничена мобильностью, скоростью вращения лопасти.

Выработка электрической энергии городов

Посмотрим устройство генератора тока ГЭС. Для накопления потенциальной энергии движимой руслом реки водами воздвигается плотина. Уровень вверх по течению быстро начинает подниматься.

Чтобы избежать прорыва (любого типа), часть многотонной массы стравливается (кое-где ставят специальные шлюзы пропускать рыбу на нерест). Полезная часть течения проходит сквозь направляющий аппарат. Знакомые с устройством реактивных двигателей, поняли речь.

Направляющим аппаратом называется конфигурация створок, изменением положения регулируется количество проходящей среды (водя).

Говорили в обзорах, регламентированы жесткие требования на частоту вырабатываемого электричества. Ученые просчитали: можно достичь при нынешнем уровне развития, применяя массивные лопасти, на которых не сказываются малые удары волн. Учитывается средняя масса проходящей воды, мелкие скачки скрадываются несусветной массой винта. Очевидно, имея весомые габариты, скорость вращения бессильна составить 50 Гц (3000 об/мин). Лопасть делает 1-2 об/мин.

Линии электропередач

Винт вращает ротор генератора. Движущаяся ось, усаженная обмотками возбуждения. Катушки, сквозь которые пропускается постоянный ток для создания устойчивого магнитного поля. Излучения не происходит, значение напряженности постоянное (см. выше). Наблюдаются неявные флуктуации, результат не отражается на сути процесса: валу образован несколькими вращающимися магнитами.

Возникает тонкий момент: как получить частоту 50 Гц. Быстро пришли к выводу: выпрямлять переменный ток, после ставить инвертор обратного преобразования невыгодно. Вдоль статора расположили множество проволочных катушек (рамка из опытов Фарадея), в которых будет наводиться индукция.

Путем правильной коммутации с генератора удается снять нужные 230 вольт (на деле стоят еще понижающие трансформаторы) с частотой 50 Гц. Генераторы дают три фазы, сдвинутые на 120 градусов. Возникает новый вопрос – обеспечить стабильность.

 Подавать дозированное количество воды, пока лопасть набирает скорость? Практически невозможно, поступают следующим образом:

  1. Помимо токосъемных катушек статоре содержит возбуждающие.
  2. Туда подается напряжение частоты, позволяющей лопасти набрать нужную скорость.
  3. Получается фактически громадный синхронный двигатель.

Начальный разгон нагоняется потоком воды, вспомогательное напряжение придерживает винт, пытающийся превысить заданную скорость. Вода фактически толкает махину, напряжение возбуждения послужит регуляции (понятно, на статор подается переменный ток).

Требуется получить больше мощности, направляющий аппарат плотины чуть приоткрывается. Масса воды становится более солидной, непременно сорвала бы обороты.

Приходится увеличивать ток возбуждения статора, контролирующее поле становится сильнее, ситуация остается в нормальных пределах.

Двигатель внутреннего сгорания Катерпиллер, вращающий генератор

Мощность генератора возрастает. А напряжение, поддерживается уровень? По закону электромагнитной ЭДС Фарадея напряжение определено скоростью изменения магнитного поля, числом витков.

Получается, конструктивно выбирая площадь катушек, длину кабеля, задаем выходное напряжение генератора. Разумеется, каждый должен иметь свою скорость вращения лопасти. Выдерживается током возбуждения ротора. При возрастании мощности увеличивается ЭДС.

Рост тока возбуждения повышает скорость изменения магнитной напряженности поля.

Нужен способ поддержания прежних параметров. Зачастую становятся развязывающие трансформаторы с переменным коэффициентом передачи. Потребитель меняет ток, напряжение остается постоянным. Обеспечиваются заданные стандартами параметры. Устройство генератора переменного тока основано на возбуждении обмоток статора, остальное сводится к методикам регуляции параметров.

Регулировка параметром генераторов переменного тока

В простейшем случае мощность не поддается изменению. В бытовых (мелких генераторах) схема отслеживает напряжение, меняется значение тока возбуждения. Редко ситуация на руку потребителю. Расходуется солярка. Получается, тратится прежняя энергия, часть рассеивается пространством. Не страшно, когда возвращаем Земле часть скорости реки, жечь топливо задаром редкий скупец захочет.

Читатели поняли: обороты сорвутся, если не уменьшить подачу воды, газа, пара – в общем, движущей силы. Отслеживает отдельная цепь регуляции, снабженная регулировочными механизмами. Частному дому лучше создать систему аккумуляторную, сегодня имеется возможность 12 вольтами постоянного тока питать освещение, ноутбуки, многие другие приборы. Сеть возможно оборудовать отводом для периодического заряда батарей. Методик, как помним, две:

Простая схема работы генератора

  1. С постоянным током. Напряжение варьируется, каждый час заряжается одна десятая емкости. Длительность процесса – 600 минут.
  2. С постоянным напряжением. Ток падает по экспоненте, вначале составит сравнительно большие величины. Главный недостаток методики.

Принцип действия генератора переменного тока позволит вести подзарядку аккумуляторов, руководствуясь необходимостью. Понятно, потребуется цепь гальванической развязки перед каскадом батарей. Можно догадаться из прочитанного, ГЭС применяют устройства с подстраиваемым коэффициентом трансформации. Методики реализации затеи могут быть разными:

  1. Широкое распространение получили трансформаторы с коммутируемыми обмотками. Число витков может меняться путем переключения контакторами цепей.
  2. Более плавный коэффициент обеспечивает скользящий контакт. Здесь витки одной катушки зачищены, токосъемник бегает взад-вперед, меняя число рабочих витков. Понятно, большой ток пропустить сложно, будет возникать искра, в случае ГЭС станет дугой. Скорее устройство регулирования сравнительно малых мощностей.

Из сказанного следует: ток возбуждения ротора ГЭС логично менять скачками в такт переключению обмоток регулирующего трансформатора. Потом происходит плавная подстройка, параметры напряжения приходят в норму. Рассказали в общих чертах, как работает генератор переменного тока. Стоит отметить: конструкцией многообразие не исчерпано. Описанный вид устройств составляет костяк семейства под названием синхронные генераторы переменного тока. Обеспечивают города, по большей части, энергией.

Асинхронный генератор переменного тока

Асинхронные генераторы отличаются отсутствием электрической связи меж статором и ротором. Скорость регулируется направляющим аппаратом. Сообразно стабильность частоты падает, амплитуда напряжения также носит непостоянный характер. В результате можно отметить относительную простоту конструкции асинхронного генератора переменного тока, стабильность параметров не блещет хорошими показателями.

Отличительной чертой назовем способность недостатков асинхронных двигателей плавно перекочевывать, заражая новые устройства. Очевидно, для снабжения потребителей энергией регулируют частоту тока, мощность получается случайной. Хотя, если генератор находится в относительно постоянном окружении, сказанное не окажется большой проблемой.

Источник: https://VashTehnik.ru/elektrika/ustrojstvo-i-princip-raboty-generatora-peremennogo-toka.html

Как работает генератор переменного тока?

Когда люди присмотрелись к возможностям электричества, сразу начали придумывать, как бы серьезно поставить на службу эту интересную энергию. И появилась целая гамма приборов, устройств, установок, способных создавать на двух металлических концах электрическое напряжение.

К концам сразу же прикрутили два болтика и начали подвешивать к ним все, что вызывало теперь массу интересных эффектов. Устройства эти в целом назвали источниками электроэнергии, или генераторами. А то, что к ним подключалось — электрической цепью.

А по мере роста цепей и занятия ими все более значимого и постоянного места в человеческой жизни, их стали называть уже электрическими сетями.

Именно генераторы создали всю нашу электроиндустрию.

Чем принцип работы генератора переменного тока отличается от принципов работы первых источников? Некой надежностью и постоянством, происходящими от надежности и всеобщей доступности той энергии, из которой они вырабатывают электричество.

Это механическое движение. А у нас мир весь полон движения. И вполне естественно было заставить роторы крутиться, а движение для этого брать из чего-то еще. Из тепла. Сгорает топливо, ротор крутится — генератор тока работает.

Первоначальный источник же был продуктом первых экспериментов. Химия (аккумуляторы), электризация (электрофорные машины) — все это как-то слабо. Потому что непропорционально дорого, сравнительно с количеством энергии, которое потребовали сети. Сначала осветительные, а потом почти сразу трамвайные. Вот трамвай и толкнул генераторы тока вперед в развитии.

Трамвайная линия — это то, где электроэнергия сама производит движение. Плюсом такого подхода оказалась очень удобная подача такого «топлива» на большие довольно расстояния. И очень органично вписалась в затраты по изготовлению самой трамвайной линии. Когда кладут железные пути, что уж там не проложить вдоль них еще и проволоку, подводящую ток к трамваям, которые могут теперь находиться на линии в любом месте и с одинаковой легкостью получать эту энергию.

Преобразование оказалось симметричным: устройство генератора переменного тока практически такое же, как и у двигателя. Только у генератора назначение — вырабатывать электричество, вращая ротор, а у другого электроэнергия крутит почти такой же ротор, а уже он — колеса трамвая.

О такой передаче энергии механики прошлых веков только мечтали. Ведь когда-то с помощью водяного колеса вращали валы обрабатывающих станков в целых цехах. А энергию механическую передавали тоже механически: с помощью валов, шкивов, ремней, шестеренок… Тут же всего-то — два проводочка. А в случае с трамваями вообще один. Второй — сами рельсы.

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных — учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток.

Читайте также  Подключение генератора с автозапуском к домашней сети

Когда изобрели телеграф — наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, — этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона.

Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.

Усиление сигнала с помощью реле

Трамвайные линии, как известно, поначалу унаследовали эту традицию — питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора — выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами — генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Принцип работы устройства

Генератор переменного тока — это механико-индукционная машина, создающая переменное электрическое напряжение на своих выходных контактах в ответ на вращение своей подвижной части посторонней силой.

Подвижная часть генератора (или альтернатора) называется ротором, неподвижная — статором.

Две части генератора производят следующее: одна из них создает магнитное поле, а вторая часть содержит проводники, расположенные так, что при изменении относительно них этого магнитного поля (назовем его генерирующим), на их противоположных концах возникает разность потенциалов. Она снимается и переправляется с этих проводников на выходные контакты.

Виды генераторов переменного тока

Отсюда возможны два варианта конструкций генератора переменного тока, в которых:

  • генерирующее магнитное поле создается в статоре и неподвижно;
  • генерирующее магнитное поле создается в роторе и вращается вместе с ним.

В любом случае напряжение, возникающее в результате генерации, нужно снимать не с той части генератора, где создается магнитное поле, а с противоположной.

Первоначально — начиная с опытов по вращению рамки из проводника в неподвижном магнитном поле — ротор и служил для наведения в его обмотках (или рамках) электрической индукции, порождавшей движение электронов к разным концам этих проводников, отчего и возникало напряжение.

Видимо, это связано с тем, что магниты выбирали побольше и потяжелее, дабы создавать сильное поле с большим градиентом, а рамочки с током были совсем легкие. Но теперь и ротор, и статор — это точно пригнанные друг к другу массивные части.

Напряжение с вращающегося ротора (или якоря) необходимо снять с помощью специального механизма и отправить на неподвижные выходные контакты. Такой механизм называется коллектором (от лат.

«сборщик»), в нем неподвижные подпружиненные щетки, «протянутые» от статора, плотно прижимаются к вращающимся вместе с ротором контактам.

Принцип устройства генераторов электрического тока

Быть может, конструктивно это самая узкая часть электродвигателей и генераторов. Она требует специального исполнения, при вращении детали ее стираются, от плохих контактов — при стертых пластинах контактов, или промежутков между ними, или стертых щетках (которые изготовляются обычно из графита — а от него токопроводящая пыль) — начинается искрение при вращении, и это никому не нравится.

Поэтому самым удобным вариантом генераторов переменного тока является второй. Это когда магнитное поле вращается ротором, а напряжение возникает в неподвижном статоре. И его не надо снимать никаким замысловатым образом.

Принцип работы

Магнитное поле можно гонять (изменять, вращать) над одной системой проводников (имеющих два полюса) или над несколькими.

Схема простейшего генератора Схема простейшего генератора

Из рисунка понятно, как устроен простейший генератор переменного тока. Из чего состоит генератор? Основные части — ротор и статор. Мы видим, что ротор с установленным в нем магнитом N–S вращается. При этом полюса магнита, то N, то S, попеременно совсем близко от катушек с обмотками.

Обмотки последовательно соединяются друг с другом и потом с выходными контактами. Направление и поток магнитного поля, проходящий через обмотки, при вращении изменяется. От чего и возникает переменное напряжение на выходных контактах с частотой f вращения ротора.

Происходит генерирование напряжения, а при подключении к контактам нагрузки возникает переменный ток частоты f.

Схема эта — наипростейшая. Она только чуть сложнее, чем те рамочки, которые крутили когда-то в поле двух магнитов. Только теперь, наоборот, магнит, установленный на роторе, вращается, а неподвижные катушки дают напряжение.

Напряжение получается синусоидальным, достигает максимума и минимума, когда около катушек проходят полюса магнита — около них поток магнитного поля наиболее плотен, и поэтому происходит самое быстрое изменение поля. И на контактах в это время будет наведено максимальное по величине напряжение U, или — U . Когда же ротор повернется так, что магнит будет проходить горизонтальное положение, выходное напряжение будет пересекать нулевое значение.

Трехфазный генератор переменного тока

Однако мы видим, что в этой простой электрической машине еще очень много свободного места. Что ж, можно по периметру статора поставить не одну пару, а несколько пар катушек.

Но придется тогда от каждой пары катушек отводить отдельные контакты для напряжений, чтобы напряжения разных пар не гасили друг друга.

Получится как бы несколько генераторов в одном, каждый из них будет давать синусоидальное напряжение, но так как катушки повернуты относительно друг друга, и синусоиды будут сдвинуты ровно на такой угол, на какой сдвинуты пары катушек относительно нашей первоначальной.

 Схема трехфазного генератора  Схема простейшего генератора

Катушки распределены по периметру статора равномерно, то есть друг от друга отстоят на угол 120⁰. Точно такой сдвиг фаз получается и у напряжений. Напряжение U1 с нулевым сдвигом (это наша первая пара катушек), напряжение U2 — 120⁰ и напряжение U3 — 240⁰.

Такое напряжение называется трехфазным. Его возможно передавать с помощью единой системы проводов — три провода по одной на каждую фазу, а ноль всех трех объединяется в один. Это можно сделать двумя способами: соединив обмотки катушек по типу «треугольник» или «звезда».

Можно придумать и другие схемы генерации переменного напряжения, например, установив не три пары катушек, а только две. Тогда разница фаз между ними получится в 90⁰.

Применение нашла именно трехфазная система генерации.

При потреблении трехфазного напряжения часто выделяют отдельные фазы и раздают их разным потребителям. Когда потребителей много, то случайным образом «раздавать» фазы можно — в среднем обычно получается одинаковая нагрузка на все фазы. Но это должно отслеживаться. Потому что если потребление по разным фазам сильно отличается или оно очень неравномерно себя ведет во времени, наступает такое явление, как «перекос фаз».

Напряжение по разным фазам начинает отличаться. А это ведет к очень многим плохим последствиям: перерасходу электроэнергии, выходу из строя трансформаторов, электроприборов, двигателей. На электростанции — к падению КПД генераторов (они начнут как бы «хромать») и даже выходу из строя генераторов электроэнергии.

Чтобы минимизировать такого рода ущерб, нулевой провод обычно хорошо заземляют, но и следить должны энергетики за таким неприятным явлением.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты — занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими».

Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника — это может быть аккумулятор или другой источник постоянного тока.

Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого.

А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника — и генератор тока возбуждения, и генератор-устройство, дающее конечный результат — напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций — все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров. Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное.

Источник: https://domelectrik.ru/oborudovanie/dvigatel/generator-peremennogo-toka

Понравилась статья? Поделить с друзьями:
Добавить комментарий