Характер нагрузки потребителя электрической энергии виды

Содержание

Графики электрических нагрузок потребителей

Характер нагрузки потребителя электрической энергии виды

Электрическая нагрузка отдельных потребителей, а следовательно, и суммарная их нагрузка, определяющая режим работы электростанций в энергосистеме, непрерывно меняется. Принято отражать этот факт графиком нагрузки, т.е. диаграммой изменения мощности (тока) электроустановки во времени.

По виду фиксируемого параметра различают графики активной Р, реактивной Q, полной (кажущейся) S мощностей и тока I электроустановки.

Как правило, графики отражают изменение нагрузки за определенный период времени. По этому признаку их подразделяют на суточные (24 ч), сезонные, годовые и т.п.

По месту изучения или элементу энергосистемы, к которому они относятся, графики можно разделить на следующие группы:

  • графики нагрузки потребителей, определяемые на шинах подстанций;
  • сетевые графики нагрузки — на шинах районных и узловых подстанций;
  • графики нагрузки энергосистемы, характеризующие результирующую нагрузку энергосистемы;
  • графики нагрузки электростанций.

Графики нагрузки используют для анализа работы электроустановок, для проектирования системы электроснабжения, для составления прогнозов электропотребления, планирования ремонтов оборудования, а также в процессе эксплуатации для ведения нормального режима работы.

Суточные графики нагрузки потребителей

Фактический график нагрузки может быть получен с помощью регистрирующих приборов, которые фиксируют изменения соответствующего параметра во времени.

Перспективный график нагрузки потребителей определяется в процессе проектирования. Для его построения надо располагать прежде всего сведениями об установленной мощности электроприемников, под которой понимают их суммарную номинальную мощность. Для активной нагрузки

(1)

Присоединенная мощность на шинах подстанции потребителей

(2)

Где — соответственно средние КПД электроустановок потребителей и местной сети при номинальной нагрузке.

В практике эксплуатации обычно действительная нагрузка потребителей меньше суммарной установленной мощности. Это обстоятельство учитывается коэффициентами одновременности kо и загрузки kз. Тогда выражение для максимальной нагрузки потребителя будет иметь вид:

(3)

где kспр — коэффициент спроса для рассматриваемой группы потребителей.

Коэффициенты спроса определяются на основании опыта эксплуатации однотипных потребителей и приводятся в справочной литературе. Средние значения коэффициентов спроса для некоторых промышленных потребителей приведены в табл.1.

Таблица 1

Коэффициент спроса kспр

Найденное по (3) значение максимальной нагрузки является наибольшим в году и соответствует обычно периоду зимнего максимума нагрузки.

Кроме Рmax, для построения графика необходимо знать характер изменения нагрузки потребителя во времени, который при проектировании обычно определяется по типовым графикам.

Типовой график нагрузки строится по результатам исследования аналогичных действующих потребителей и приводится в справочной литературе в виде, показанном на рис.1,а.

Рис.1. Суточные графики активной нагрузки потребителя а — типовой

б — в именованных единицах

Для удобства расчетов график выполняется ступенчатым. Наибольшая возможная за сутки нагрузка принимается за 100%, а остальные ступени графика показывают относительное значение нагрузки для данного времени суток.

При известном Рmax можно перевести типовой график в график нагрузки данного потребителя, используя соотношение для каждой ступени графика:

(4)

где n% — ордината соответствующей ступени типового графика, %.

На рис.1,б показан график потребителя электроэнергии, полученный из типового (рис.1,а) при Рmax = 20 МВт.

Обычно для каждого потребителя дается несколько суточных графиков, которые характеризуют его работу в разное время года и в разные дни недели. Это — типовые графики зимних и летних суток для рабочих дней, график выходного дня и т.д. Основным является обычно зимний суточный график рабочего дня. Его максимальная нагрузка Рmax принимается за 100%, и ординаты всех остальных графиков задаются в процентах именно этого значения (рис.2).

Рис.2. Пример типового графика конкретного вида производства (черная металлургия) 1 — график рабочего дня

2 — график выходного дня

Кроме графиков активной нагрузки, используют графики реактивной нагрузки. Типовые графики реактивного потребления также имеют ординаты ступеней, %, абсолютного максимума:

(5)

где tgφmax определяется по значению cosφmax , которое должно быть задано как исходный параметр для данного потребителя.

Суточный график полной мощности можно получить, используя известные графики активной и реактивной нагрузок. Значения мощности по ступеням графика (рис.3) определяются по выражениям

(6)

где Рn и Qn — активная и реактивная нагрузки данной ступени в именованных единицах.

Рис.3. Суточные графики активной, реактивной и полной мощности потребителя

Суточные графики районных подстанций

Эти графики определяются с учетом потерь активной и реактивной мощностей в линиях и трансформаторах при распределении электроэнергии.

Потери мощности от протекания тока в проводах линий и в обмотках трансформаторов являются переменными величинами, зависящими от нагрузки. Постоянную часть потерь мощности в сети определяют в основном потери холостого хода трансформаторов.

Постоянные потери распределения и переменные потери для максимального режима в i-м элементе сети (линии, трансформаторе) находят с использованием методов, известных из курса «Электрические сети». Суммарные потери для любой ступени графика нагрузки подстанции могут быть найдены из выражений

Читайте также  Электрические обогреватели экономичные для дома

(7)

где Si — нагрузка i-го элемента сети, соответствующая рассматриваемой n-й ступени суммарного графика нагрузки; Si,max — нагрузка элемента (линии, трансформатора), при которой определены

Способ построения графика активной нагрузки для конкретной сети показан на рис.4.

Рис.4. К построению графика активной нагрузки
электрической сети (на шинах районной подстанции)
а — схема сети, б — графики нагрузки отдельных потребителей,

в — суммарный график нагрузки

Суточные графики нагрузки электростанций

Суммируя графики нагрузки потребителей и потери распределения в электрических сетях в целом по энергосистеме, получают результирующий график нагрузки электростанций энергосистемы

Рис.5. Графики активной нагрузки энергосистемы

График нагрузки генераторов энергосистемы получают из графика мощности, отпускаемой с шин, учитывая дополнительно расход электроэнергии на собственные нужды (рис.5). При значительных колебаниях нагрузки электростанций необходимо учитывать переменный характер потребления собственных нужд.

(8)

где Рi — мощность, отдаваемая с шин станции; Руст — установленная мощность генераторов; Рc.н.max — максимальный расход на собственные нужды; коэффициенты 0,4 и 0,6 приближенно характеризуют соответствующую долю постоянной и переменной части расхода на собственные нужды Рс.н.max.

Нагрузка между отдельными электростанциями распределяется таким образом, чтобы обеспечить максимальною экономичность работы в целом по энергосистеме. Исходя из этих соображений, диспетчерская служба энергосистемы задает электростанциям суточные графики нагрузки.

При проектировании электрической части электростанции необходимо знать график нагрузки трансформаторов и автотрансформаторов связи с энергосистемой. Способ построения такого графика для трансформаторов связи ТЭЦ с энергосистемой показан на рис.6.

Рис. 6. Графики активной нагрузки для ТЭЦ, работающей в энергосистеме а — поясняющая схема 6 — графики выработки и потребления мощности на генераторном напряжении

в — график нагрузки трансформаторов связи

Требуемый график Рт получают, вычитая из графика нагрузки генераторов Рг график потребления местной нагрузки и расход электроэнергии на собственные нужды Рс.н.

Годовой график продолжительности нагрузок

Этот график показывает длительность работы установки в течение года с различными нагрузками. По оси ординат откладывают нагрузки в соответствующем масштабе, по оси абсцисс — часы года от 0 до 8760. Нагрузки на графике располагают в порядке их убывания от Рmax до Рmin (рис.7).

Рис.7. Годовой график продолжительности нагрузок

Построение годового графика продолжительности нагрузок производится на основании известных суточных графиков. На рис.8 показан способ построения графика при наличии двух суточных графиков нагрузки — зимнего (183 дня) и летнего (182 дня).

Рис.8. Способ построения годового графика продолжительности нагрузок

Для наиболее распространенных потребителей электроэнергии в справочниках приводятся типовые графики активной и реактивной нагрузок по продолжительности.

График продолжительности нагрузок применяют в расчетах технико-экономических показателей установки, расчетах потерь электроэнергии, при оценке использования оборудования в течение года и т.п.

Технико-экономические показатели, определяемые из графиков нагрузки

Площадь, ограниченная кривой графика активной нагрузки, численно равна энергии, произведенной или потребленной электроустановкой за рассматриваемый период:

(9)

где Рi — мощность i-й ступени графика; Тi — продолжительность ступени.

Средняя нагрузка установки за рассматриваемый период (сутки, год) равна:

(10)

где Т — длительность рассматриваемого периода; Wп — электроэнергия за рассматриваемый период.

Степень неравномерности графика работы установки оценивают коэффициентом заполнения

(11)

Коэффициент заполнения графика нагрузки показывает, во сколько раз выработанное (потребленное) количество электроэнергии за рассматриваемый период (сутки, год) меньше того количества энергии, которое было бы выработано (потреблено) за то же время, если бы нагрузка установки все время была максимальной. Очевидно, что чем равномернее график, тем ближе значение kзп к единице.

Для характеристики графика нагрузки установки можно воспользоваться также условной продолжительностью использования максимальной нагрузки

(12)

Эта величина показывает, сколько часов за рассматриваемый период Т (обычно год) установка должна была бы работать с неизменной максимальной нагрузкой, чтобы выработать (потребить) действительное количество электроэнергии Wп за этот период времени. Определение величины Тmax можно проиллюстрировать на примере рис.3.

В практике применяют также коэффициент использования установленной мощности

(13)

или продолжительность использования установленной мощности

(14)

В формулах (13) и (14) под Руст следует понимать суммарную установленную мощность всех агрегатов, включая резервные.

Коэффициент использования kи характеризует степень использования установленной мощности агрегатов. Очевидно, что kиуст< Т. С учетом соотношения Руст≥Рmax имеем kи≤kзп.

В среднем для энергосистем России продолжительность использования установленной мощности электростанций составляет около 5000 ч в год.

   

Источник: http://www.gigavat.com/obschie_svedeniya_ob_elektroustanovkah4.php

Качество электроэнергии: что это такое, основные показатели

В типовом договоре энергоснабжения детально прописаны обязательства поставщика. Одно из них касается показателей качества электроэнергии. Будет полезным узнать, что конкретно подразумевается под этим термином, о каких показателях идет речь, а также получить информацию о действующих нормативных документах. Эти сведения позволят грамотно составить претензию к поставщику, если качество электроэнергии не отвечает установленным требованиям стандарта ГОСТ.

Что такое качество электроэнергии?

Для каждого типа электрической сети установлены определенные характеристики (параметры качества). Соответствие между ними и действительными значениями определяет качество электрической энергии.

Изменения ПКЭ могут возникнуть вследствие потерь электроэнергии при передаче на расстояние, увеличением потребляемой нагрузки, электромагнитных явлений и т.д.

Для оценки качества электричества осуществляются замеры основных показателей КЭ. Подробно они расписаны в нормах ГОСТа 13109-97, а также в его новой редакции 13109 99, приведем выдержки с кратким описанием каждого показателя.

Читайте также  Российские мясорубки электрические с металлическими шестернями

Основные показатели качества электроэнергии

Поскольку идеального соответствия номинальным параметрам добиться невозможно, в нормировании показателей предусмотрены отклонения. Они могут быть допустимыми и предельно допустимыми. Ниже перечислены основные показатели качества и указаны приемлемые нормы для каждого из них

Отклонение напряжения

Данный показатель определяется при помощи специального коэффициента, характеризующего установившиеся отклонения  по отношению к номинальным. Для расчета используется следующая формула: δUуст = 100% * (Uт – Uн)/Uн , где Uт – текущий показатель , Uн – номинальный. Измерения показателей качества производится на приемниках электроэнергии. Осцилограмма данного процесса представлена ниже.

Рис. 1. Установившееся отклонение и колебания напряжения

Такие отклонения качества характерны при существенных изменениях нагрузки или больших потерях в процессе передачи электроэнергии. Допустимыми считаются показатели при Uуст не более 5,0%, предельно допустимые – 10,0%.

Колебания напряжения

Данный параметр характеризует временные отклонения амплитуды колебаний электротока. Осцилограмма процесса представлена на рисунке 1. Это составной параметр качества электроэнергии, поскольку для характеристики колебаний напряжения необходимо учитывать:

  • размах изменений;
  • дозу колебаний (частоту повторений) ;
  • длительность отклонений.

Для первых двух пунктов необходимо дать небольшие пояснения.

Размах изменения напряжения.

Данный параметр качества электроэнергии описывается разностью между максимальными и минимальными отклонениями. Коэффициент размаха определяется следующей формулой: (UPmax – UPmin)/Uном , где  UPmax – максимальная величина размаха,  UPmin – минимальная, Uном – номинальное значение. Допустимое значение для коэффициента размаха – не более 10%.

Доза колебаний напряжения.

Данный критерий служит для описания частоты, с которой происходят отклонения. Следует учитывать, что если временной период между колебаниями меньше 30,0 миллисекунд, то их необходимо рассматривать как одно отклонение.

Для расчета используется следующее выражение: Fповт = m/T , при этом m определяет количество изменений за определенный временной период измерений – Т, равный 10-ти минутам. Нормы этого показателя напрямую связаны с дозой фликера, она будет описана ниже.

Отклонение частоты

В системах общего назначения для этого параметра установлено значение 50,0 Гц. Нормы стандарта допускают увеличение или уменьшение частоты на 2,0% или 4,0% (допустимые и предельные показатели, соответственно). Превышение допустимых отклонений частоты приводит выходу из строя импульсных БП, сбоям в работе электрогенераторов.

Доза фликера

Данный параметр описывает влияние на человека, производимое мерцанием источников света по причине изменения амплитуды электротока. Измерения производятся при помощи специальных приборов, определяющих допустимое мерцание.

Коэффициент временного перенапряжения

Эта характеристика определяет насколько текущая амплитуда выше предельно допустимого порога. Такие отклонения характерны при КЗ или коммутационных процессах. Случайный характер отклонений не позволяет нормировать показатель, но собранная статистика используется при определении качества электроэнергии однофазной или трехфазной сети.

Осцилограмма перенапряжения и провала напряжения

Провал напряжения

Под этим параметром подразумевается значительное снижение амплитуды (более 10,0% от номинального), с последующим восстановлением. Причиной провалов напряжения может быть КЗ, резкое увеличение нагрузки.

Характеристики для данного показателя качества электроэнергии описываются следующими составляющими:

  • Глубина «проседания» напряжения, в некоторых случаях она может стремиться к нулю.
  • Количеством отклонений за определенный промежуток времени.
  • Продолжительностью.

Последнее требует пояснения.

Длительность провала напряжения.

По этому критерию можно судить как о качестве, так и надежности электроснабжения. «Проседание» с минимальной продолжительностью может не вызвать сбоев в работе электрических и электронных устройств. При длительности в несколько секунд, велика вероятность отключения оборудования с электрическими или электронными схемами управления. Помимо этого возрастает реактивная составляющая электродвигателей, что приводит к снижению коэффициента мощности.

В связи со случайной природой явления, его нормирование не предусмотрено.

Импульсное напряжение

Проявляется в виде краткосрочного (до 10-ти миллисекунд) увеличения амплитуды электроэнергии. Вызвать такой резкий скачок могут коммутационные процессы или грозовые разряды. Поскольку такие состояния сети носят случайный характер, нормирование импульсов не предусмотрено.

Импульс высокого напряжения

Для описания высокочастотных импульсов используются следующие характеристики:

  • Параметр максимальной амплитуды. В сетях до 1-го кВ, при прямом попадании разряда молнии, амплитуда выброса может достигать 6-ти кВ.
  • Длительность. Продолжительность высокоамплитудного (грозового) импульса, как правило, не превышает нескольких миллисекунд.

Несимметрия напряжений в трехфазной системе

К такому явному ухудшению качества электроэнергии может привести неправильно распределенная нагрузка между фазами одной цепи, КЗ на землю, обрыв нейтрали, подсоединение потребителя с несимметричной нагрузкой.

Характерный перекос фаз

В связи с этим установлено требование, согласно которому разница нагрузки между фазами одной цепи не должна быть более 30,0% в пределах одного электрощита и 15,0% в начальной точке питающей линии.

Для определения показателей несимметрии используются коэффициенты нулевой и обратной последовательностей. Первый рассчитывается по формуле: Кнп =  100% * Uнп / Uном, второй: Коп = 100% * Uоп / Uном, где Uнп – амплитуда нулевой последовательности, Uоп – обратной.

Согласно установленным нормам регулирования напряжения в сетях до 1-го кВ значение Uнп и Uоп должны быть не более 2% и 4% (допустимое и предельное значения).

Несинусоидальность формы кривой напряжения

Данный вид некачественной электроэнергии связан с наличием сторонних гармоник. Чем выше частотность паразитной составляющей, тем больше величина искажения. Это видно если сравнить гармонику тока высокого (см. рис. 5) и третьего порядка (рис. 6).

Рис 5. Гармоника высокого порядка

Причина такого отклонения – подключение к сети потребителя с нелинейной ВАХ. Характерный пример – преобразователь на тиристорах.

Рис. 6. Гармоника третьего порядка

Для описания данного отклонения от качественных показателей используется коэффициент синусоидальных искажений, который определяется формулой Kи = ⎷∑UN2 / Uном * 100%, где U – амплитуда гармоник.

Читайте также  Как сделать проточный водонагреватель электрический своими руками

Допустимые и предельно допустимые нормы, характеризующие качественную или некачественную электроэнергию для различных сетей, приведены в таблице ниже.

Допустимые коэффициент искажения синусоидальности для различных электросетей

Как проверить и измерить качество электрической энергии?

Прежде, чем приступать к измерениям, определяющим качество электрсети, следует принять во внимание, что ПКЭ должны быть зафиксированы представителями поставщика электроэнергии. По результатам проверки составляется акт, на основании которого можно предъявлять претензию.

Для проверки всех характеристик электроэнергии на соответствие требованиям ГОСТ 53144-2013, ГОСТ Р 54149-2010 и другим нормативным документам, потребуется специальная измерительная техника. Но часть основных показателей можно измерить, используя обычный мультиметр или определить несоответствие по косвенным признакам.

Как самостоятельно выявить снижение качества электроэнергии?

Перечислим показатели, которые можно проверить, используя мультиметр в режиме измерения переменного напряжения:

  1. Устоявшееся отклонение.
  2. Перенапряжение (включая перекос фаз).
  3. Провалы.

Второй и третий пункт довольно условны, длительность искажения может быть недостаточной для реакции прибора, а перепады напряжения будет сложно отличить от перенапряжений и провалов.

К косвенным методам определения качества электроэнергии относится анализ состояния сети по работе лампы с нитью накала. Слишком яркое свечение укажет на повышенное напряжение, тусклое – будет свидетельствовать о «проседании», мигание засвидетельствует перепады.

Нехарактерная работа электрооборудования также свидетельствует о недостаточном качестве электроэнергии. Например, компрессор холодильника постоянно функционирует, нестабильная работа электроники, самопроизвольное отключение бытовой техники, все это указывает на недостаточное напряжение в бытовой сети. Превышение напряжения вызовет срабатывание реле защиты, если оно было установлено.

Источник: https://www.asutpp.ru/kachestvo-jelektrojenergii.html

Понятие электрических нагрузок

Для правильного выбора и проверки проводников (кабелей и шин), а также трансформаторов по экономической плотности тока и соответственно пропускной способности,  расчета потерь и отклонений напряжений, выбора устройств компенсации и защиты необходимо знать электрические нагрузки проектируемого объекта.

Основой рационального решения вопросов электроснабжения современных предприятий и энергосистем является правильное определение электрических нагрузок. При завышении нагрузок – появляются излишние затраты, а также недоиспользование мощностей дорогостоящего оборудования.

При занижении – может приводить к перегрузкам энергосистемы и недоотпускам продукции. Ни первый, ни второй вариант не являются приемлемыми. Данную задачу осложняет еще и то, что имеется довольно много факторов и зависимостей, трудно поддающихся учету при проектировании.

Режимы работы предприятий

Графики и режимы работы предприятий и энергосистем довольно не стабильны и изменяются во времени, как показано на рисунке ниже:

Где: 1 и 2 – это активная и реактивная мощности соответственно.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Довольно много существует различных методов проведения расчетов электрических нагрузок, обзор и анализ их мы не будем приводить в данной статье. Эти методики постоянно совершенствуются как практически, так и теоретически и базируются на обследованиях наиболее характерных предприятиях. Обследования – основа для практического внедрения методик.

Определение нагрузок

Для подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:

  • Мощные электроприемники (например, главные привода прокатных станов, электропечи, мощные электромашины) нужно изучать путем изучения технологического цикла, а также индивидуальных показателей режима работы. Построение графиков электрических нагрузок на основе технологических графиков работы цеха либо предприятия;
  • Определить суммарные резкопеременные нагрузки (например электропечи и т.д.) на основе графиков индивидуальных нагрузок с учетом фактора несовпадений индивидуальных графиков для снижения максимальной ударной нагрузки и для уменьшения колебания напряжения сети;
  • Определить нагрузку воздуходувных, насосных, компрессорных станций по удельному потреблению электрической энергии на единицу объема воздуха, воды и так далее;

Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников.

Виды электрических нагрузок

Для того, чтоб выполнить проект системы электроснабжения нужно определить следующие виды нагрузок:

  • Средние – мощность, потребленная за максимально загруженную смену. Также могут быть среднемесячные или среднегодовые. Средняя мощность, потребленная за год, нужна для определения годовых потерь электрической энергии, а средняя мощность за максимально загруженную смену – по ней определяют расчетный максимум;
  • Максимально – кратковременные (пиковые) – их определение нужно для проверки колебания напряжения в сетях, для определения параметров срабатывания токовой защиты, выбора плавких предохранителей, проверки электрических сетей по условиям самозапуска электрических машин;
  • Максимальные имеющие различную продолжительность (10, 30, 60 мин) – их используют чтоб произвести расчет электрической сети по нагреву, определения потерь мощности максимальных в сетях, выбор элементов сети по плотности тока (экономической), для определение отклонений напряжений и потерь.

В отдельных отраслях при проектировании систем электроснабжения могут вводить некоторые уточнения и допущения, которые базируются на довольно хорошем знании специфики технологического процесса данной отрасли, а также выявлении, более детальном для данной отрасли, расчетных коэффициентов, расходов энергии, числа часов использования максимума.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

Источник: http://elenergi.ru/ponyatie-elektricheskix-nagruzok.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий