D триггер принцип работы

Содержание

D триггер

D триггер принцип работы

> Теория > D триггер

Триггеры представляют собой электронные устройства, которые могут находиться в одном из двух состояний длительное время. При внешнем воздействии (подаче сигнала извне) они изменяют своё состояние. Благодаря этому свойству их называют логическими элементами с памятью.

Микросхема 4х д-триггер SO16

Выходные сигналы зависят не только от того, какие импульсы подаются на вход, но и от того, что в триггере хранилось перед этим.

Данные устройства используются в основном в микропроцессорной технике. Микросхемы, как правило, имеют в своём составе триггер или бистабильный элемент и управляющую систему.

Триггеры бывают двух типов: асинхронные, или нетактируемые, и синхронные, или тактируемые.

В асинхронном – переход из одного положения в другое выполняется фронтом или перепадом напряжения. То есть для того, чтобы осуществился переход, на управляющем входе должна быть смена 1 на 0 или 0 на 1.

Синхронный тип переключается в новое положение в том случае, когда на управляющий вход подаётся импульс.

Выпускаются нескольких типов:

  • RS-триггер;
  • D-триггер;
  • Т-триггер;
  • JS-триггер.

Устройство д триггера

В цифровой и вычислительной технике наиболее распространённым является d-триггер. Иначе его называют триггером задержки (от английского слова delay).

Для производства d-триггера обычно используются полевые или биполярные транзисторы, а также интегральные микросхемы.

Для управления логическими элементами используются входы, которые делятся на информационные и вспомогательные. Информационные – воспринимают управляющие импульсы. В зависимости от его значения, в д-триггер записывается то или иное значение. Вспомогательные – предназначены для синхронизации работы.

Слово «задержка» в названии характеризует то, что поступивший информационный сигнал задерживается в нём ровно на один такт. Время задержки зависит от частоты импульсов синхронизации.

Схематическое изображение d-триггера

На картинке выше символом D обозначен информационный или вход данных, а С – тактовый или синхронизирующий. На информационный – подаётся информационный сигнал, который необходимо сохранить в д-триггере, а на тактовый вход подаётся тактовый импульс, в зависимости от значения которого определяется режим д-триггера: режим записи или режим хранения.

Принцип работы

Логическое устройство будет находиться в устойчивом положении в том случае, если на С=0. В этом случае импульсы, подающиеся на информационный D-вход, никак не влияют на прибор, и выходной импульс определяется записанным ранее значением. Если С=1, то выходной сигнал будет зависеть от того, какой т подан на информационный D-вход. Если D=1, то на выходе будет 1, если D=0, то на выходе будет 0.

Таблица истинности будет иметь вид

Входной сигналВыходной сигналРежим работы
С D Q
определяется предыдущим состоянием Хранение информации
1 определяется предыдущим состоянием
1 Запись информации
1 1 1

Внимание! Логический компонент хранит информацию только при подаче нулевого значения на C-вход.

Д-триггер выполняется двух типов: с управлением по уровню и с управлением по фронту.

Элементы с управлением по уровню

Временная диаграмма работы прибора со статическим управлением (по уровню сигнала) изображена на рисунке ниже.

Временная диаграмма работы d-триггера со статическим управлением

При статическом управлении переход из одного состояния в другое выполняется по уровню. Сигнал с D-входа будет записываться только при высоком уровне на тактовом C-входе.

Элементы с управлением по фронту

Данный тип логического устройства срабатывает при переходе с одного уровня на другой. Срабатывание может выполняться в двух случаях: по переднему и заднему фронту. По переднему, если переход выполняется от 0 к 1, и по заднему, если от 1 к 0.

Чтобы переключить d-триггер в нужное нам положение, сначала подаётся 0 или 1 на информационный D-вход. Если необходимо на выходе получить единицу, то D=1, если нужно, чтобы был на выходе ноль, то на D=0.

Затем на С-вход подаётся тактовый импульс. По его изменению элемент переключится в нужное нам состояние. При этом сигнал, который подаётся на D-вход, будет сохранён.

Такая логика работы делает электронный компонент очень удобным для хранения одного разряда двоичного числа (0 или 1). Причём, это состояние д-триггер будет сохранять до тех пор, пока не поступит следующий бит информации.

https://www.youtube.com/watch?v=tKZkAx9Q3Po

Временная диаграмма работы d-триггера с динамическим управлением

Для сброса д-триггера нужно, чтобы на входах D=0, а С=1. Однако таким образом не всегда можно управлять состоянием, поэтому в схемах используют компоненты с тремя входами.

Схематичное изображение d-триггера с тремя входами

В этом случае добавляется третий R-вход, который отвечает за сброс информации.

Схема реализации d-триггера

Реализация д-тригера может выполняться на основе ТТЛ (транзисторно-транзисторная логика) элементов,  а также логических элементах КМОП.

Большинство микросхем относятся к компонентам с комплиментарной структурой – металл-оксид-полупроводник (КМОП). Данная технология основывается на использовании полевых транзисторов с изолированными затворами.

Реализация д-триггера на ТТЛ элементах приведена на рисунке ниже.

Схема устройства на ТТЛ-элементах

Если в логическом элементе D-вход соединить с инверсным выходом, то в этом случае прибор можно использовать в качестве счётного или Т-триггера. В этом случае при подаче импульса на С-вход логический компонент переходит в противоположное положение.

В сети интернет имеются сайты с сервисами, на которых можно просмотреть результат работы разного вида триггеров. Тип устройства выбирается из соответствующего списка.

Демонстрация работы устройств

Триггеры являются важной компонентой для создания различных микросхем. Их использование позволяет выполнять устройства с цифровой памятью. В микропроцессорной технике они являются основой для реализации электронных компонентов оперативной памяти. Их используют в регистрах сдвига и регистрах хранения.

Источник: https://elquanta.ru/teoriya/d-trigger.html

Логические триггеры: схемы, классификация, устройство, назначение, применение

Триггер — простейшее последовательностное устройство, которое может находиться в одном из двух возможных состояний и переходить из одного состояния в другое под воздействием входных сигналов. Триггер является базовым элементом последовательностных логических устройств.

Входы триггера разделяют на информационные и управляющие (вспомогательные). Это разделение в значительной степени условно. Информационные входы используются для управления состоянием триггера.

Управляющие входы обычно используются для предварительной установки триггера в некоторое состояние и для синхронизации.

{xtypo_quote}Триггеры могут иметь 2 выхода: прямой Q и инверсный Q.{/xtypo_quote}

Триггеры классифицируют по различным признакам, поэтому существует достаточно большое число классификаций. К сожалению, эти классификации не образуют стройной системы, но инженеру необходимо их знать.

Классификация триггеров:

● способу приема информации;

● принципу построения;

● функциональным возможностям.

Различают асинхронные и синхронные триггеры.

Асинхронный триггер — изменяет свое состояние непосредственно в момент появления соответствующего информационного сигнала.

Синхронные триггеры — реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации C (от англ. clock). Этот вход также обозначают терминами «строб», «такт».

Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации C. Статические триггеры воспринимают информационные сигналы при подаче на вход C логической единицы (прямой вход) или логического нуля (инверсный вход). Динамические триггеры воспринимают информационные сигналы при изменении (перепаде) сигнала на входе C от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход).

Статические триггеры в свою очередь подразделяют на одноступенчатые (однотактные) и двухступенчатые (двухтактные). В одноступенчатом триггере имеется одна ступень запоминания информации, а в двухступенчатом — две такие ступени. Вначале информация записывается в первую ступень, а затем переписывается во вторую и появляется на выходе. Двухступенчатый триггер обозначают через ТТ.

Различие триггеров по функциональным возможностям

● с раздельной установкой состояния 0 и 1 (RS-триггеры);

● универсальные (JK-триггеры);

● с приемом информации по одному входу D (D-триггеры, или триггеры задержки);

● со счетным входом Т (Т-триггеры).

Входы триггеров обычно обозначают следующим образом:

S — вход для установки в состояние «1»;

Читайте также  Принцип работы 5 контактного реле

R — вход для установки в состояние «0»;

J — вход для установки в состояние «1» в универсальном триггере;

К — вход для установки в состояние «0» в универсальном триггере;

Т — счетный (общий) вход;

D — вход для установки в состояние «1» или в состояние «0»;

V — дополнительный управляющий вход для разрешения приема информации (иногда используют букву Е вместо V).

Рассмотрим некоторые типы триггеров и их реализацию на логических элементах.

Асинхронный RS-триггер

Обратимся к асинхронному RS-триггеру, имеющему условное графическое обозначение, приведенное на рис. 3.54. 

{xtypo_quote}Триггер имеет два информационных входа: S (от англ. set) и R (от англ. reset). {/xtypo_quote}

Закон функционирования триггеров удобно описывать таблицей переходов, которую иногда также называют таблицей истинности (рис. 3.55). Через S’, R’, Q’ обозначены соответствующие логические сигналы, имеющие место в некоторый момент времени t, а через Qt + 1 — выходной сигнал в следующий момент времени t+1. Комбинацию входных сигналов S’ = l, R’ =1 часто называют запрещенной, так как после нее триггер оказывается в состоянии (1 или 0), предсказать которое заранее невозможно. Подобных ситуаций нужно избегать.

Рассматриваемый триггер может быть реализован на двух элементах ИЛИ-НЕ (рис. 3.56).

Необходимо убедиться, что эта схема функционирует в полном соответствии с приведенной выше таблицей переходов.

Микросхема К564ТР2 содержит 4 асинхронных RS-триггера и один управляющий вход (рис. 3.57).
При подаче на вход V низкого уровня выходы триггеров отключаются от выводов микросхем и переходят в третье так называемое высокоимпедансное состояние. При подаче на вход V логического сигнала «1» триггеры работают в соответствии с вышеприведенной таблицей переходов.

В асинхронном RS-триггере на элементах И-НЕ переключение производится логическим «0», подаваемым на вход R или S, т. е. реализуется обратная рассмотренной ранее таблица переходов (рис. 3.58). Запрещенная комбинация соответствует логическим «0» на обоих входах.

Синхронный RS-триггер

Рассмотрим синхронный RS-триггер (рис. 3.59).

Если на входе С — логический «0», то и на выходе верхнего входного элемента «И-НЕ», и на выходе нижнего будет логическая «1». А это, как отмечалось выше, обеспечивает хранение информации. Таким образом, если на входе С — логический «0», то воздействие на входы R, S не приводит к изменению состояния триггера. Если же на вход синхронизации С подана логическая единица, то схема реагирует на входные сигналы точно так же, как и рассмотренная ранее (рис. 3.56).

Триггер типа MS

Рассмотрим принцип построения двухступенчатого триггера, который называют также триггером типа MS (от англ. master, slave, что переводят обычно как «ведущий» и «ведомый»). Его упрощенная структурная схема приведена на рис. 3.60. В схеме имеются два одноступенчатых триггера (ведущий М и ведомый S) и два электронных ключа (Кл1 и Кл2).
Временная диаграмма сигнала синхронизации, поясняющая работу триггера, приведена на рис. 3.61.
Рассмотрим ряд временных интервалов указанной диаграммы:

t < ta — ведущий триггер отключен от информационных входов, ведомый триггер подключен к ведущему;

ta < t < tb — ведущий триггер отключен от информационных входов, ведомый триггер отключен от ведущего;

tb < t < tc — ведущий триггер подключен к информационным входам, ведомый триггер отключен от ведущего. В ведущий триггер записывается информация, поданная на входы;

tc < t < td — ведущий триггер отключен от информационных входов, ведомый триггер отключен от ведущего;

td < t — ведущий триггер отключен от информационных входов, ведомый триггер подключен к ведущему, информация из ведущего триггера переписывается в ведомый. Это происходит сразу после момента времени td и означает, что фактически двухступенчатый триггер срабатывает при изменении сигнала синхронизации от 1 к 0. При этом выходные сигналы определяются теми входными информационными сигналами, которые имели место непосредственно перед отрицательным фронтом сигнала синхронизации.

JK-триггер

Рассмотрим JK-триггер (от англ. jump иkeep), отличающийся от рассмотренного RS-триггера тем, что появление на обоих информационных входах (J и К) логических единиц (для прямых входов) приводит к изменению состояния триггера. Такая комбинация сигналов для JK-триггера не является запрещенной.

{xtypo_quote}В остальном JK-триггер подобен RS-триггеру, причем роль входа S играет вход J, а роль входа R — вход К.{/xtypo_quote}

JK-триггеры реализуют в виде триггеров типа MS или в виде динамических триггеров (т. е. JK-триггеры являются синхронными). 

На рис. 3.62 приведено условное графическое обозначение двухступенчатого JK-триггера.

Обратимся к динамическим триггерам. Для них характерно блокирование информационных входов в тот момент, когда полученная информация передается на выход. Нужно отметить, что в отношении реакции на входные сигналы динамический триггер, срабатывающий при изменении сигнала на входе С от 1 к 0, подобен рассмотренному двухступенчатому триггеру, хотя они отличаются внутренним устройством.

Для прямого динамического С-входа используют обозначения, приведенные на рис. 3.63, а, а для инверсного динамического С-входа, используют обозначения, приведенные на рис. 3.63, б.

D-триггер

Рассмотрим D-триггер (от англ. delay), повторяющий на своем выходе состояние входа. Рассуждая чисто теоретически, D-триггер можно образовать из любых RS- или JK-триггеров, если на их входы одновременно подавать взаимно инверсные сигналы (рис. 3.64).

Хранение информации в D-триггерах обеспечивается за счет синхронизации, поэтому все реальные D-триггеры имеют два входа: информационный D и синхронизации С. В этом триггере сигнал на входе по сигналу синхронизации записывается и передается на выход.

Так как информация на выходе остается неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защелкой.

Условное графическое обозначение D-триггера приведено на рис. 3.65.

Т-триггер

Рассмотрим Т-триггер, который изменяет свое логическое состояние на противоположное по каждому активному сигналу на информационном входе Т. Условное графическое обозначение двухступенчатого Т-триггера приведено на рис. 3.66.

Источник: https://pue8.ru/silovaya-elektronika/912-triggery-printsip-dejstviya-ustrojstvo-naznachenie.html

Логические элементы — триггеры, и другие.

Слово триггер(trigger), по английски означает — спусковой крючок. Функция триггера — мгновенное переключение из одного устойчивого состояние в другое, под действием внешнего, управляющего фактора.

Существуют пневматические, механические и релейные схемы триггеров. Но электронные схемы, по надежности и самое главное — быстродействию, безусловно,вне конкуренции. Электронная схема триггера состоит из двух усилительных каскадов и по своей сути, является одной из разновидностий мультивибратора.

Выход каждого из каскадов подключен к входу другого, но не через конденсаторы, как в обычном симметричном мультивибраторе а через резисторы. Номиналы этих резисторов подобраны так, что каскад с полностью открытым транзистором, уверенно запирает транзистор другого каскада. Если подать на триггер питающее напряжение, то оба каскада начинают «бороться» между собой, пытаясь закрыть друг-друга.

Как бы не были транзисторы близки по характеристикам, один из них(присвоим ему номер1) обязательно окажется»сильнее» и закроет другой (для удобства обозначим его как номер 2)Все происходит очень быстро, выглядит так, что транзистор 1 мгновенно оказывается открытым, а другой (2) закрытым. В таком состоянии триггер может находиться очень долго. Можно назвать его — 1-м устойчивым состоянием.

Если подать на вход закрытого каскада(2) имульс напряжения, достаточный, что бы его открыть на короткое время, то открывшись он «запрет» каскад 1, пребывающий до этого момента в открытом состоянии. Закрывшись, каскад 1 перестает запирать каскад 2, и тот так и останется открытым. Таким образом, каскады поменяются местами, триггер окажется во 2-м устойчивом состоянии.

В таком состоянии он может находиться очень долго, если не подать открывающий импульс, на закрытый каскад 1. Каскад 1 открываясь, запрет каскад 2 и триггер вернется в первоначальное состояние(1). Получается, что наш триггер имеет два устойчивых состояния и два управляющих входа, подав на которые импульсы достаточной амплитуды, можно эти состояния менять.

Из триггера с двумя входами легко можно сделать счетный триггер с одним входом. Для этого два входа объеденим с помощью двух диодов. Диоды здесь необходимы для гальванической развязки.

Когда на полученный таким образом общий вход подается открывающий импульс, происходит открывание запертого транзистора, вследствии чего происходит переключение триггера из одного устойчивого состояния в другое. Следующий импульс возвращает триггер в прежднее состояние.

У счетного триггера, также должен быть и выход. Выход можно вывести с коллектора любого из транзисторов. В итоге, получается что на каждые два импульса поступившие на вход, мы получаем один импульс на выходе. Происходит деление любого числа поступивших импульсов на два.

Двоичная система исчисления, представляется наиболее оптимальной для цифровых электронных устройств, оперирующих информацией с помощью двух состояний уровня сигнала. Высокого — соответствующего еденице, и низкого — соответствующему нолю. Если соединить несколько счетных триггеров последовательно — получается устройство, ведущee счет в двоичном режиме исчисления(последовательный счетчик).

Каждый последующий триггер, служит здесь двоичным разрядом. Разряд в двоичной системе, может иметь только два значения — 0 и 1. Условимся, что состояние каждого триггера(0 или1)будет определятся состоянием его правого каскада. Для наглядности, пусть индикация состояний будет производиться с помощью лампочек, включенных в качестве коллекторной нагрузки.

Читайте также  Силовые трансформаторы устройство и принцип действия

Представим, что на вход расположенный с левой стороны поступило пять импульсов — пять едениц.

Первый импульс.

Число 1 на выходе в двоичной системе совпадает с еденицей в системе десятичной.

Второй импульс.

Число 10 на выходе — соответствует 2 в десятичной системе.

Третий импульс.

Число 11 в двоичной системе — 3 в десятичной.

Четвертый импульс.

Число 100 в двоичной системе — 4 в десятичной.

Пятый импульс.

Число 101 в двоичной системе — 5 в десятичной.

Таким образом осуществляется пересчет и запоминание чисел, а так же — деление частоты.

Обозначения различных разновидностей триггеров

На электронных схемах принято графическое обозначение триггеров и других элементов логики, в виде условных прямоугольников с входами и выходами.

R — S триггеры

R — S триггер это самая простая схема, с описании ее работы как раз, и начинается эта страница. Она имеет два входа R (reset)- установки в состояние 0 и S(set) — установки в состояние 1. Выходов тоже два, но основным считается выход-Q.

D — триггеры.

Для использования триггеров в реальных счетных устройствах, необходимо иметь возможность дополнительного управления их состояниями — предустановки, обнуления, активации с помощью счетного тактового импульса. Что бы осуществить эту операцию в схему счетного триггера добавляется еще три входа.

PRESET(PR) — восстанавливает на выходе триггера состояние 1, а СLEAR(CL) — состояние 0.С помощью тактового входа Т осуществляется общая синхронизация триггера, относительно других элементов схемы счетного устройства.

Импульс поступающий на счетный вход D меняет состояние триггера, только при наличии 1 на тактовом входе.

J-K — триггер

Это наиболее универсальная разновидность триггера — «на все случаи жизни.» Такой триггер имеет целых два тактовых входа -J и K, прямыми входами являются PR и CLR. Так же, имеется счетный вход -CLOCK(CK) и два выхода, как и у других прочих подобных устройств.

В настоящее время применяются электронные триггеры, в основном — в интегральном исполнении(микросхемы)

Процессы, необходимые для функционирования любых технологических устройств ( в т. ч. и ПК) можно реализовать с помощью ограниченного набора логических элементов.

Буфер

Буфер, представляет из себя усилитель тока, служащий для согласования различных логических вентилей, в особенности имеющих в своей основе разную элементную базу (ттл или КМОП).

Инвертор

Элемент, служащий для инвертирования поступающих сигналов — логическая еденица превращается в ноль, и наоборот.

Логическая схема И

И — элемент логического умножения. Еденица (высокий уровень напряжения) на выходе, появляется только в случае присутствия едениц, на обоих входах, одновременно.

Пример применения элемента И в реальном техническом устройстве:
По тех. заданию, механический пресс должен срабатывать, только при одновременном нажатии двух кнопок, разнесенных на некоторое расстояние. Смысл тех. задания заключается в том, что бы обе руки оператора были заняты на момент хода пресса, что исключило бы возможность случайного травмирования конечности. Это может быть реализовано как раз, с помощью логического элемента И.

Логическая схема И — НЕ

И-НЕ — наиболее часто используемый элемент. Он состоит из логических вентилей И и НЕ, подключенных последовательно.

Пример применения элемента И-НЕ в реальном техническом устройстве:
По тех. заданию, ход стационарной транспортной платформы, управляемой электродвигателем, должен ограничиваться, нажатием путевых конечных выключателей — правого или левого.

Как видите, применение электронных элементов логики для выполнения простейших схематических решений нецелесообразно. Более сложные, многоходовые операции — циклы, другое дело. Применение аппаратных(непрограммируемых) контроллеров на основе электронных логических элементов, в оборудовании довольно частое явление.

Логическая схема ИЛИ

ИЛИ — схема логического сложения. Логическая еденица на выходе, появляется в случае присутствия высокого уровня(еденицы) на любом из входов.

Логическая схема ИЛИ — НЕ

ИЛИ — НЕ состоит из логических элементов ИЛИ и НЕ, подключеных последовательно. Соответственно, НЕ инвертирует значения на выходе ИЛИ.

Логическая схема исключающее ИЛИ

Этот вентиль выдает на выходе логическую еденицу, если на одном из входов — еденица, а на другом, ноль. Если на входах присутствуют одинаковые значения — на выходе ноль.

Триггер Шмитта(Шмидта)

Триггер Шмитта выдает импульс правильной формы, при сигнале произвольной формы на входе. Применяется для преобразования медленно меняющихся сигналов в импульсы, с четко очерчеными краями.

страницу

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Источник: https://elektrikaetoprosto.ru/digit.html

Триггеры. Принцип работы

Всем доброго времени суток! Сегодняшний мой пост посвящён цифровым микросхемам, которые имеют память. Подобно тому, как человек помнит события из своей жизни, так и эти микросхемы могут долго хранить заложенную в них информацию, а когда необходимо выдавать её.

Такими цифровыми микросхемами являются триггеры (англ. – Trigger или Flip-Flop). В отличие от простых логических микросхем, которые называют комбинационными (НЕ, И-НЕ, ИЛИ и другие) и их сигналы на выходе чётко соответствуют сигналам на входе, то триггеры относятся к последовательным или последовательностным микросхемам, уровень выходного напряжения которых, зависит от того в какой последовательности поступали сигналы на вход триггера. С помощью триггеров строят более сложные цифровые микросхемы.

Сигналы, поступившие на вход триггера, могут храниться только до тех пор, пока на него подается напряжение питания. После каждого включения триггера на его выходах появляются случайные логические уровни напряжения. Триггеры обладают очень высоким быстродействием, сравнимым с задержками при переключении простейших логических элементов, однако объём хранимой информации мал. Один триггер может хранить только один сигнал или бит.

Внутреннее устройство триггера

Не вдаваясь в глубину схемотехники триггера, скажу сразу, что простейший триггер представляет собой схему из двух логических элементов, взаимодействуя между собой с помощью положительной обратной связи, которая обеспечивает нахождения выходов триггера в одном их двух логических состояний неограниченное время.

Схема триггерной ячейки на логических элементах (RS триггер).

Схема на рисунке выше представляет простейший триггер (или триггерная ячейка), который имеет два входа и два выхода. Входы триггера реагируют на низкий логический уровень: вход R – сброс (англ. Reset – сброс) и вход S – установка (англ. Set – установка), выходы: прямой Q (англ. Quit – выход) и инверсный –Q.

Как говорилось выше, входы триггера R и S реагируют на низкий логический уровень и сигналы на них должны поступать с некоторой разницей во времени. Опишем работу данной схемы. Когда на обоих входах триггера присутствует низкий логический уровень, то это никак не отразится на уровне напряжения на выходах. Когда на вход S поступит сигнал лог.

1, то на выходах Q будет лог. 0, а на –Q – лог. 1. Если теперь на вход R триггера поступит лог. 1, то выходные сигналы не изменятся. И наконец если изменить уровень сигнала на входе S с высокого на низкий уровень, то на выходе триггера Q будет лог. 1, а на –Q – лог. 0. Таким образом, для данной триггерной ячейки можно составить таблицу истинности.

Таблица истинности триггерной ячейки (RS триггер).

Входы Выходы
R S Q -Q
Не определено
1 1
1 1 Без изменений
1 1

Схемы с такой таблицей истинности называются RS триггерами. RS триггеры служат основой для многих динамических устройств: делители частоты, счётчики, регистры. Кроме вышеописанного RS триггера существует ещё несколько типов триггеров, которые отличаются методом управления, входными и выходными сигналами. Все современные триггеры объединены в серии цифровых микросхем:

  • RS триггеры – самый простой и редко используемый триггер, имеет обозначение ТР;
  • JK триггер – имеет сложное управление, обозначение ТВ;
  • D триггер – самый распространённый и имеет сложность среднюю, обозначение ТМ;

RS триггеры

Рассмотрим принцип работы RS триггера возьмём микросхему К555ТР2.

Обозначение RS триггера К555ТР2

Данная микросхема имеет 4 RS триггера, два из которых имеют по одному R входу и одному S входу, а два других – по одному R входу и по два S входа, объединенных по функции И. Все 4 RS триггера данной микросхемы имеют по одному прямому выходу. Принцип работы данных триггеров не отличатся от триггерной ячейки описанной выше.

Импульс с низким уровнем на входе триггера R приводит состояние выхода к низкому уровню, а импульс с низким логическим уровнем на входе триггера S – состояние выхода в высоком логическом уровне. В случае появления одновременных сигналов на входах триггера переводит его выход в состояние лог.

1, а после окончания импульсов в одно из устойчивых состояний.

JK триггер

Микросхема типа К555ТВ9, является представителем семейства JK триггеров, который имеет следующий принцип работы.

Читайте также  Дифзащита трансформатора принцип действия

Обозначение JK триггера К555ТВ9.

Микросхема К555ТВ9 содержит два JK триггера. Триггеры данного типа сложнее по устройству и по управлению по сравнению с RS триггером. В дополнение к стандартным входам R и S, которые работают аналогично с RS триггером, в JK триггере имеются информационные входа J и K, а также вход синхронизации С.

https://www.youtube.com/watch?v=g1PHEXU5HeY

Таблица истинности JK триггера.

Входы Выходы
-S -R C J K Q -Q
1 Х Х Х 1
1 Х Х Х 1
Х Х Х Не определено
1 1 1→0 1 1
1 1 1→0 1 1
1 1 1→0 Не изменяется
1 1 1→0 1 1 Меняется напротивоположное
1 1 1 Х Х Не изменяется
1 1 Х Х Не изменяется
1 1 0→1 Х Х Не изменяется

Принцип работы JK триггера следующий. Вход R триггера служит для перевода прямого выхода в лог.1, а вход S триггера – в состояние лог.0. Вход С (англ. Clock – часы)служит для тактирования JK триггера, то есть все изменения выходов происходят только когда на входе С сигнал изменяется с высокого уровня на низкий.

Информационные входа J (англ. Jump – прыжок) и К (англ. Kill – убить) работают следующим образом: если на J лог.1 и на К лог.0, то по импульсу со входа С на Q будет лог.1 и на –Q будет лог.0. Для изменения уровня сигнала на выходах на противоположные необходимо на J подать лог.0, а на К лог.

1, тогда по импульсу на входе С состояние выходов измениться.

D триггер

D триггер является самым используемым, а по управлению он занимает промежуточное положение между RS триггером и JK триггером. Представителем D триггеров является микросхема К555ТМ2.

Обозначение D триггера микросхемы К555ТМ2

В составе данной микросхемы содержится два D триггера, которые имеют два входа сброса и установки R и C, информационный вход D (англ.

Dalay – задержка) триггера и один тактируемый вход С триггера, а также два выхода: прямой Q и инверсный –Q.

Как и все триггеры, у которых имеется тактируемый вход С, принцип работы D триггера основан на переключении уровней напряжений на выходе триггера только стробированием по входу С. Таким образом можно составить таблицу истинности D триггера.

Таблица истинности D триггера

Входы Выходы
-S -R C D Q -Q
1 X X 1
1 X X 1
X X Не определено
1 1 0→1 1
1 1 0→1 1 1
1 1 Х Не меняется
1 1 1 Х Не меняется
1 1 1→0 Х Не меняется

D триггер является наиболее универсальным потому, что данным триггером можно заменить все остальные RS триггеры и JK триггеры. Для замены RS триггера необходимо просто не использовать входы D и C входы D триггера, а относительно JK триггера, то для большинства схем одной пары входов вполне достаточно. Ниже приведены схемы замены триггеров

Схема замены D триггером: RS триггера (слева) и JK триггера в счётном режиме (справа).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Скажи спасибо автору нажми на кнопку социальной сети

Источник: http://www.electronicsblog.ru/cifrovaya-sxemotexnika/triggery-princip-raboty.html

D-триггер: схема и принцип работы

При работе со схемами, которые должны монтироваться в различные электронные приборы или продукты любительской радиоинженерии, для решения поставленных задач и достижения целей нередко используется D-триггер. Но перед тем как использовать эту деталь, необходимо хорошо разобраться в специфике работы устройства. Приступим.

Что такое D-триггер?

Под этим названием понимают целый класс электронных устройств, которые обладают способностью на протяжении длительного времени находиться в одном из двух устойчивых состояний, а при подаче сигналов управления – менять его. D-триггер – это такая составляющая схем, которая позволяет организовывать задержки выполнения. Они имеют, как правило, два входа.

Принцип работы триггера

Перед тем как приступать к рассказу о применении этого устройства, необходимо объяснить, как работает D-триггер. Принцип работы такой: когда приходит импульс синхронизации на вход С, то устройство начинает активно работать.

Информация, полученная им, сохранится даже после прекращения подачи импульсов и десинхронизации сигнала, приходящего на порт С. Поскольку информация будет сохраняться до прихода ещё одного импульса, который всё поменяет, то второе название, полученное этим устройством – триггер с запоминанием информации.

Организовать работу модели D можно с любых (теоретически) моделей JK или RS, если к ним подавать взаимно инверсные сигналы, причем подавать одновременно.

Схематическое построение D-триггеров

Если опытный человек посмотрит на схему этого типа устройств, то он может заметить натренированным глазом, что она состоит из двух (как правило) усилительных каскадов. Выходы на каждом из них подключены ко входу остальных через резисторы. Подбираются они так, чтобы тот каскад, у которого открыт транзистор, уверенно запирал другой. Можно провести интересный эксперимент: при подаче напряжения на триггер внутри него каскады начнут «бороться» между собой, чтобы закрыть друг друга.

Схематически это устройство можно узнать на схемах по таким особенностям:

  1. Наличие двух входов. Один из них устанавливает логическую единицу. Второй — логический ноль.
  2. Также есть два выхода.

С помощью одного из входов (тактового) можно провести общую синхронизацию триггера относительно остальных элементов схемы. Импульс, который поступает на другой вход, меняет положение устройства, но только в том случае, если на тактовом входе была перед этим установлена логическая единица. Вот так описательно выглядит D-триггер. Схема, точнее, фотография схемы представлена в статье.

Физические реализации триггерных систем

В подзаголовке говорится о «триггерных системах» из-за того, что сами по себе эти устройства мало чего стоят. Но если необходимо сделать временную задержку перед выполнением или во время процедуры – их весьма сложно заменить.

Также тот факт, что D-триггер может запросто длительное время работать без дополнительной настройки, позволяет его сделать очень ценным элементом любых схем, где необходима временная задержка.

Для радиолюбителей они стали настоящим спасением при конструировании автоматических роботизированных станков, ведь эти элементы позволяют сделать временную задержку, необходимую для того, чтобы в рабочую область подать материал или деталь.

Синхронные и асинхронные триггеры: в чем разница?

Синхронные устройства имеют только логические (или по-другому – информационные) входы. Асинхронные механизмы срабатывают сразу, как только получили сигнал. Они не ждут, пока пройдёт временная задержка в тех элементах, которые образуют триггер.

Асинхронный D-триггер не работает как устройство в обычном понимании. Благодаря этому он имеет один несомненный плюс: всегда, когда подаётся сигнал на вход, этот логический элемент сразу меняет значение выхода, а не ждёт определённой тактовой частоты.

Для тех, кто умеет создавать близкие к идеальным схемы, триггеры будут весьма полезны.

Синхронные имеют не только информационные входы, у них также есть отдельный вход для подачи тактового сигнала. И именно к ним относится D-триггер. Он состоит из комбинационных схем (КС) и элементов памяти (ЭП). Из-за того что при наличии тактового сигнала вся работа ориентируется на один такт, триггеры и разделили на синхронные и асинхронные устройства.

Но конструктивная разница на этом не исчерпывается. Так, именно благодаря тактовому сигналу, его воздействию, можно полностью исключать из внимания переходные процессы, что позволяет, в свою очередь, облегчить работу с электроникой. Именно поэтому синхронный D-триггер является более популярным и используемым на практике.

Даже пример, который был приведён в начале статьи, подразумевал его использование.

Динамические и статические триггеры

Динамические устройства представляют собой систему, одно состояние которой (логическая единица) характеризуется наличием на выходе непрерывающейся последовательности импульсов, имеющих определённую частоту. При втором состоянии (логический ноль) отсутствуют выходные импульсы. Изменение состояний проводится с помощью подачи внешнего импульса. Динамический D-триггер из-за необходимости подачи энергии нашел довольно слабое распространение.

Статистическими триггерами называют устройства, каждое состояние которых можно характеризовать неизменным уровнем выходного напряжения (можно в учебной литературе встретить фразу «выходными потенциалами»).

Для высокого состояние оно будет близким к напряжению питания, для низкого будет сремиться к нулю. Благодаря такому способу представления выходных данных статистические триггеры часто называют потенциальными.

Они делятся на две подгруппы, которые различаются по своему практическому значению для любителей электроники:

  1. Несимметрические.
  2. Симметрические.

Своим названием подгруппы обязаны способам организации электрических связей между составляющими элементами схемы. Так, в симметрических триггерах при рассмотрении схемы можно заметить симметрию расположения элементов. В несимметрических устройствах она не наблюдается.

Использование триггеров

Основная задача, которая решается с помощью таких устройств — с их помощью создается счетчик на D-триггерах. Они отличаются стабильностью своей работы и эффективностью контроля временных функций.

Применение D-триггер нашел в промышленном оборудовании, а также в самодельных автоматизированных комплексах, которые работают с применением временных задержек. Хотя могут они использоваться и в других случаях, такая практика не является распространенной, и существует исключительно в целях утоления любопытства конструкторов.

Так, создавать регистр на D-триггерах не очень практично, но благодаря дешевизне устройства такая практика довольно распространена.

Источник: https://1skidka.com/page.php?id=6107

Понравилась статья? Поделить с друзьями:
Добавить комментарий